NOISE AND DISTURBANCES

Ch.5

Calculation of noise parameters for a linear circuit

The calculation method must satisfy the following constraints:

1) The topology of the circuit to be analyzed must be completely arbitrary

2) The noise of each active device (transistor) is described by the sizes (Fo, Rn, Go and
Bo) or any other equivalent assembly; the electrical behavior is characterized by the
parameters Y say S.

3) Each passive device is assumed to generate only thermal noise.

As a result of the analysis, we will have to obtain the noise parameters of the global
circuit. If the circuit has a single input and a single output it will be assimilated to a
guadripole, characterized by the four noise parameters or by the correlation matrix
between the two equivalent sources of noise at the input.

If the circuit has more inputs or outputs, then the only means of characterization
remains the correlation matrix between the equivalent sources of noise at the ports.
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* Hillbrand and Russer Methode
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C,=Cy+Cy, (52) C, =2kTR(Y) (5.5)
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C,=2kT ” 2 (5.6)

Hillorand and Russer developed an approach based on quadripole analysis. The
simulated circuit is split into a number of elementary quadruples, whose electrical and
noise performances are easy to evaluate.

Depending on the way in which the elementary quadripoles are interconnected (in
series, in parallel or in the cascade), the most convenient description is adopted (using
the parameters Z, Y or ABCD). For example, assuming we have two elementary
guadruples, denoted by the indication "1" and "2", the global correlation matrix is
obtained with the expressions (5.1) for the serial connection, (5.2) for the parallel
connection and (5.3) for the cascade connection. . In Eqg. (5.3) A is the chain matrix of the
guadripole and A * + is attached to it.

We recall that for each quadripole, depending on the representation adopted, the
correlation matrix is calculated with the relations (5.4) - (5.6).
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To move from one representation to another, we must look for the correlation matrix,
denoted C * +, with the relation (5.7), where C is the correlation matrix of the original
representation, T is a transformation matrix, which is chosen according to the Table 1.

The noise parameters are obtained from the global matrix C_A, using the expressions
(4.33).
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The proposed attenuator is shown in Fig.5.1.
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The calculation of the noise parameters is performed by observing that the circuit
consists of two elementary quadruples connected in the cascade, the diagram of which
is illustrated in Fig.5.2.

We look for the global correlation matrix and after the relation (5.3) it is sufficient to
calculate the chain matrices of two quadruples, as well as the corresponding correlation
matrices. We have four stages:

The study of quadripole Q1

The quadripole shown in Figure 5.2a is easily characterized by its matrix Y1, Eq. (5.8).
With the help of the relation (5.5) we have Eq. (5.9a).

Using Table 1 we have the Relationship (5.9b).

The transition to the correlation matrix in the chain representation is performed
according to the expression (5.7), adopting the corresponding transformation matrix
from Table 1, ie Eq. (5.9¢), which leads to Eq. (5.10).
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For the quadripole defined in Figure 5.2b, the most convenient description is made using
the matrix (5.11a), from which we have the matrix (5.11b) and (5.11c).

Then, the transition to the representation through the chain matrix is possible due to the
transformation matrix T2 (see also Table 1), Eq. (5.11d), which leads us to the relation

(5.12).
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The global correlation matrix is calculated with the relation (5.3), substituting the
expressions (5.9b), (5.12) and (5.10). We have Eq. (5.13).
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The relations (4.33) give us the relations (5.14).
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R, =200Q, Y, =(7.071+ jO)mS, F, = 5.8284271(sau 7.6555dB), F =7.5(sau 8.7506dB)

n

In the particular case R1 = R2 =R, the calculus relations become (5.15).
Using the numeric values we obtain the results on the slide.
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By applying the Hillorand and Russer method to different configurations of simple
guadripoles, the results obtained are on the slide.
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By applying the Hillorand and Russer method to different configurations of simple
guadripoles, the results obtained are on the slide.
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By applying the Hillorand and Russer method to different configurations of simple
guadripoles, the results obtained are on the slide.
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By applying the Hillorand and Russer method to different configurations of simple
guadripoles, the results obtained are on the slide.
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By applying the Hillorand and Russer method to different configurations of simple

guadripoles, the results obtained are on the slide.
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Modeling
The noise present at the terminals of a multipole comes from the thermal noise

associated with each of its resistors, but also from the noise generated by each active
device (transistor) that is inside. As usual, it is preferable to model outward noise
through equivalent generators placed at the gates of an identical, supposedly ideal
multipole.

In the present case, we prefer the Norton equivalent scheme (Figure 5.4), which, in a
representation in terms of the Y parameters, is more suitable than the Thevenin
representation.

Formulation

Let be a linear multipole having n external gates and containing m active devices. Each
active device is characterized by its admittance matrix and the four noise parameters.
We look for the correlation matrix of the Si sources (I = 1,2, ..., n) at the gates.
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Fig.5.5

Principle

The approach chosen is to first extract all the active devices from the circuit, thus
creating additional gates (according to figure 5.5).

Since the noise of the residual multipole is of a thermal nature and at the same time
independent of the noise generated by the active devices, the total power of noise at
the gates is calculated by overlapping these two contributions.
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Each noisy component in figure 5.5 is in turn replaced by a Norton representation (for
guadripoles, according to figure 4.4c, and for dipoles according to figure 5.4).

We arrive at figure 5.6, in which two categories of equivalent noise generators appear:
1) The sources noted Nk (k = 1,2,..., 2m + n) that simulate the thermal noise of the
passive multipole. They are all correlated, and their noise matrix is (5.16)

2) Jisources (1 =1,2,..., 2m) represent the noise of active devices, which is not only of
thermal nature. The sources Ji and J(i + 1) belong to the same device, they are correlated
with each other, but the noise of the different pairs is not correlated (because each pair
represents a distinct transistor).

17
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Procedure

To calculate the total noise power at the gates defined as outputs, we start by
decomposing in blocks the matrix of the multipole Y, as in Eq. (5.17), where the index "d"
denotes the 2m gates created by extracting the active devices, and the index "e"
corresponds to the exterior gates.

Then, the equilibrium equations of the network are in (5.18), where:

IVI=[[V4] [V.]]¢is the vector of gate voltages

[1=[[14] [I.]]* the vector of currents at gates

[N] =[[Ng] [N,]]t the vector of thermal noise sources

[J] is the vector of the noise sources associated with the active devices

The matrix [y] that appears in Eq. (5.18c) is the diagonal sum of all the individual
admitting matrices [y(i)] having the active devices, that is, the relation (5.19).

The classic Norton generator calculation procedure from a multipole gate is to short-
circuit the gate and to "measure" the current passing through it.

Thus, to evaluate the equivalent noise currents at the gates outside the multipole, we
set the condition [V_e] = 0 and note [I_e] with [S].

Starting from the system (5.18) we can deduce (5.20) by eliminating Id.

Further, by eliminating Vd between the equations in the system (5.20), we obtain Eq.
(5.21), where the first term of the sum represents the contribution of the passive
network and the second, the contribution of all active devices.

One can prove the relation (5.22) and (5.23), where In is the ordinal identity matrix n. In
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relation (5.23), the matrix HJ is increased by the matrix In.
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C,=H,(Y+Y')H, +2H,C,H; (5.26)
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As mentioned earlier, the N and J generators are statistically independent and the noise
matrix will result by superposition, Eq. (5.24).

Considering the expressions (5.16) and (4.32b) with index |, we have equation (5.25),
where CJ represents the sum-diagonal matrix of all correlation matrices [C_] * ((i))] of
the individual devices (it is constructed). in the same way as the matrix [y]).

The standardized correlation matrix is (5.26)

Remarks

1) Expression (5.26) offers the advantage of separating the noise contribution of the
active devices from that of the residual passive multipol.

2) If the circuit has a single input and a single output (n = 2), after the calculation of the
correlation matrix, one can proceed to the calculation of the global noise parameters.,
by means of the relations (4.35).

3) The global YL, multipole admittance matrix is calculated with relation (5.27) and gives
us the possibility to estimate the voltage and power gains associated with the various
gates, assuming that the impedances that are connected are known.

4) Moreover, from the YL matrix we can calculate the S matrix of the global circuit, with
the classical conversion formulas between the Circuit Parameters.
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