NOISE AND DISTURBANCES

Ch.4
Circuit noise modeling

Noise that appears in an electronic circuit cannot be located in a specific place. To
each resistor we must associate a source of noise and to each transistor we must
associate 3 sources of noise.

In these conditions the analysis is very difficult and we usually perform a macro-
modeling of the circuit, which will be regarded as an ideal dipole, quadripole or
multipole, without any source of noise inside. At the same time, in order to ensure
at its terminals the same voltage or current fluctuations as in the real circuit, we will
have to add to its gates, in series or in parallel, equivalent noise generators. In turn,
these generators can be represented by equivalent thermal noise sources and in this
case we are talking about equivalent noise resistance, or an equivalent noise
temperature.

In calculations, it is difficult to avoid the simultaneous presence of functions in the
frequency domain (used to describe impedances) and functions in the time domain
(associated with generators). Therefore, when making calculations at the mine,
mixing between frequency-dependent and time-dependent quantities is inevitable.




Modeling the dipole noise

* The case of a uniform temnerature
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Z(w)=R(w)+jX(w) (4.1) Z=ak1rar . R=%(2) (43a)

Y(0)=1/Z(0)=G(o)+ jB(w) (4.2)

We consider the dipole from (Fig.4.1a) which shows at its terminals the impedance
(4.1), or the admittance (4.2).

Voltage fluctuations at terminals A and B are given by one or more noise sources
found inside the dipole.

The equivalent circuit shown in (Fig.4.1b) is composed of a noise current generator
parallel to the assumed dipole; by applying Thevenin's theorem, we can deduce its
equivalent drawn in (Fig.4.1c).

Assuming that the original circuit has only thermal noise sources, all at the same
temperature, the average quadratic value of the noise voltage, in a band Af, around
the frequency of measure f, is given by Nyquist's relation (4.3a), in while the
equivalent noise current, its average quadratic value, is given by (4.3b).

i =4kTGAf,G =R(Y) (4.3b)




Modeling the dipole noise

* The case of a uniform temperature - Example
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Fie un circuit RC parallel ca in (Fig.4.2a). Interesul nostrum este pentru tensiunea de
zgomot de la bornele A-B.

Aplicind formula divizorului de tensiune modelului Thevenin din (Fig.4.2b), avem
relatia (4.4a).

Ridicind la patrat avem relatia (4.4b).

Pentru a trece la valori patratice medii ne amintim ca trebuie considerate valoarea
medie a unei cantitati complexe, ceea ce revine la a considera modulul sau, Eq(4.5)




Modeling the dipole noise

* The case of different temperatures

Pierce's rule
I, =al +al, +al;+- (4'6)
Pettai's rule

]:,ﬁ = a‘lTl + asz +a3T3 T (4'70)

a+a,+a;+--=1 (4.7b)

This situation is met, in practice, in two situations:

1) When we have different physical temperatures in different regions of the circuit
(as in the case of space systems where the transducer is on the outside of the ship
while the associated equipment is inside)

2) When describing a telecommunication system through a cascade of blocks
characterized by different noise equivalent temperatures.

Pierce's rule

For an antenna used for emission, either al power fraction that is absorbed by a
body at temperature T1, a2 power fraction that is absorbed by a body at
temperature T2, a3 power fraction that is absorbed by a body at temperature T3,
etc. Then, the temperature Te of the radiation resistance of the antenna is given by
the expression (4.6).

Pettai's rule

Let a noise source that delivers unitary power to a dipole, passive, reciprocal and
linear network. If fraction al of this power is absorbed by resistor R1, at temperature
T1, fraction a2 of resistance R2 at temperature T2, fraction a3 by resistor R3 at
temperature T3, etc., then the equivalent temperature of dipole noise (called and
effective temperature) is given by the relation (4.7a), where we have the relation




(4.7b).



Modeling the dipole noise

* Application
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Statement

We consider a suitable attenuator, whose attenuation is denoted by L and the
temperature by T2 (Fig. 4.3). If at the input a resistor RO with temperature T1 is
connected, what is the equivalent temperature of noise T at the output? What is the
equivalent temperature of noise at the attenuator input?

Solution

The noise power generated by Ro is added to the noise power provided by the
attenuator resistive network, as both are decorated. It is required to calculate the
effective Teff temperature of the resistance RO seen from the terminals (a-b), which
produces the same noise power as the source circuit.

Pierce's rule is applied, inverting the transmission: we assume that a unitary power
of noise is applied to terminals a-b. We consider that the fraction of this power is
absorbed by RO and the fraction of this power is absorbed by the attenuator. We
have Eq. (4.8).

Since the attenuation introduced by the attenuator is L, it results that the fraction of
the signal (unitary) that reaches the terminals of the resistance RO is (4.9).
Therefore, the power fraction that is absorbed in the attenuator is (4.10).

The equivalent noise temperature at the attenuator output is (4.11)




Modeling the dipole noise

* Application
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I =(L-1)7, (4.13)

Eqg. (4.11) can be presented in the form (4.12), which, by identification with (3.46b),
leads to the equivalent temperature at the input of the matched attenuator, Eq.
(4.13).

Conclusion

The noise representation of a passive, linear dipole type network has two aspects:

If all resistors are at the same temperature T, the network is characterized either by
the Thevenin model ((v_n ” 2] = 4kTR_eqAf), or the Norton model ((i_n * 2] = 4kT
G_eqAf), or by the available noise power (P = kTAf). In thiscase T_eff =T.

If the different resistors Rj are found at different temperatures Tj, the only difference
is that in the models listed above, the temperature T is replaced with the effective
Teff temperature calculated using Pierce's rule.




Modeling the noise of a quadripole
* Noisy quadripol
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For modeling you will always need 6 parameters: 4 to characterize the ideal passive
guadripole (noiseless) and 2 parameters to take into account the two equivalent
sources of noise located at the gates (according to figures 4.4 b, c or d. These
sources they are always partially correlated.

The problem
It is essential to find the correlation that exists between the two sources from the

gates. This evaluation can be done in the temporal domain (with the help of the
following two theorems) or in the frequency domain (in which case the two sources
are characterized by their own spectral power densities, own and cross).




Modeling the noise of a quadripole
* Montgomery's theorem 1
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Montgomery's theorem 1

If two currents (or voltages) originate partly in a common source and partially in
different sources, and if a is the power fraction transferred between the common
source and the first noise current (voltage), while B is the power fraction of the
common source transferred to that of the two current source (voltage) of noise, then
the correlation coefficient that exists between the two currents (voltages)
considered is the geometric mean between a and f.




Modeling the noise of a quadripole

* Montgomery's theorem 2
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Montgomery's theorem 2

The correlation coefficient between two noise currents (voltages) remains
unchanged if one or both cross linear networks, characterized by real transfer

functions.

Comment

The second theorem justifies the historical preference expressed for the scheme
presented in Fig. 4.4d, where there is a separate net between the part of the circuit
that contains the sources of noise and the ideal quadripole, presumably noisy. In this
case, we only need to find the correlation coefficient at the entrance of the linear

guadripole, which will be the same at the output.




Modeling the noise of a quadripole

* Modeling in the time domain e=e +e' (4_14)

* The Rothe and Dahlke model 7 =R +jx __ (4.15)
— @ - e=e, +iZ, (4.16)
Ycor = Gcor + -] Bcor (4 17)

“ - i=i +eY  (4.18)

Fig.4.5

If we consider the representation of the cascade type, the two sources, denoted "e"
and "I", constitute the quadripole of noise, (Fig.4.5a).

The noise voltage can be put in the form of a sum of two terms, eq. (4.14), where
the first term en is assumed to be independent of |, while (e ') is totally correlated
with i.

In order to study the circuit using conventional methods, Rothe and Dahlke proposed
to replace the correlation coefficient of the generators with a correlation impedance,
eqg. (4.15), so that we have (4.16).

The dual reasoning (the decomposition of the current into two terms, leads to the
introduction of the correlation admittance (4.17), which allows the relationship to be
written (4.18).
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Modeling the noise of a quadripole
* Modeling in the time domain = .

* The Rothe and Dahlke
model
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The circuit in Fig.4.5a and equation (4.16) lead to (4.19a), or for the dual situation
(4.19Db).
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* Modeling in the time domain

* The Rothe and Dahlke
model | .
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Equations (4.19), put in the form (4.20), lead to the equivalent noise circuits
presented in (Fig.4.5b and c), which are Rothe and Dahlke's models.

Remarks

The imitances Zcor and Ycor are supposed to be ideal (no noise). This condition is

often highlighted by writing T = 0 next to their symbol.

The existence of the imitances —Zcor and —Ycor is the consequence of the negative
terms present in the equations (4.20); on the other hand, these negative imitators
compensate for the positive ones, which ensures zero attenuation for the signals
that cross the quadripoles illustrated in Fig.4.5b and ¢ (because from the point of

view of the signal, the noise generators are presumed ideal).
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* Modeling in the time domain

Modeling the noise of a quadripole

* The Rothe and Dahlke model

Parameters of the model
& =4kT,RAf, i =4kT,G A (42la)
e =4kl A, i =4kI,g,Af (4216) Tabel 4.1
(B =
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Ri=r. 2,12,

e Ox A
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_ Y, _ z.,

L[ +(G,/R,) 2wl +(n/e))

Instead of the generators, for the model in M the equivalent noise resistance Rn and
the equivalent conductance Gn are introduced, using equations (4.21a), and for the
T-scheme, we have (4.21b).

The noise behavior is thus described by a set of 3 parameters Rn, Gn and Ycor (or rn,
gn and Zcor). These are bound by the relationships given in Table 4.1.

Characterization of the cuadripol

1) For any quadripole, the noise factor F varies with the signal source admittance and
has a minimum, noted FO, called the minimum noise factor.

2) The particular value of the source admittance corresponding to this minimum is
called the optimal source admittance and is noted with Yo = Go + jBo.

3) The set consisting of 4 parameters, Fo, Go, Bo and Rn completely characterize the
noise behavior of the quadripole.
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Modeling the noise of a quadripole

* Modeling in the time domain « The Rothe and Dahlke model

* Calculation of noise parameters

G +R((G+G, Y +(B+B,Y
F=1+ ( ) )] (4.224)
G-S'
r,+g (R +R,, g X +X,, ?
F=l+ (( R) ( ) (4.22b)

s

In order to find the relationships between the classical noise parameters and the
equivalent generators at the gates, the expression of the noise factor must first be
established. Then, with respect to the source admittance, there is the minimum
noise factor Fo and the optimal admittance Yo.

Thus, for the Rothe and Dahlke model (scheme in M), using the definition of North,
one obtains (4.22a), and for the scheme in T one obtains (4.22b)

14



Modeling the noise of a quadripole
* Modeling in the time domain « The Rothe and Dahlke model

 Calculation of noise parameters Tabelul 4.2
- schemainm SchemainT
B,==5_, =l
G,=4(G,/R,)+G, R,=\(r./2,)+R,
F,=1+2R (G,+G,,) F,=1+2g,(R +R,,)
F=F +§—:|Y,-1;|3 F=F +%:|ZS—ZD i

Following the indicated steps, we find the results presented in Table 4.2
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Modeling the noise of a quadripole

* Modeling in the time domain < The Rothe and Dahlke model
* Calculation of noise parameters

F,-1 - o (2
Gy === =Gp B, ==B,.G, R (GI-G2)) (4.23)

n

The invers conversion is provided by Egs. (4.23).

Conclusion

Rothe and Dahlke's model suppresses the correlation between generators in the
equivalent scheme. The correlation coefficient is replaced by an impedance or an
admittance of correlation (presumed without noise), which allows the analysis of the
circuit by traditional methods. Another advantage of this model is that the electrical
parameters of the quadripole do not interfere with the expressions of noise.
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Modeling the noise of a quadripole

* Relations between different parameters

F=F +%[(GS -G, +(B,~B,)"| (424)

5

Substituting the relations (4.23) into the expression (4.22a) we obtain Eq. (4.24). This
describes the variation of the noise factor in relation to the admittance of the signal
source, at a constant frequency. It is called the "fundamental noise equation".

1) Fo is the minimum noise factor, which we can obtain for a quadripole perfectly
adapting the signal source (Ys = Yo).

2) Rn is a passive parameter having the size of a resistance that "quantifies" to a
certain extent the effect of mismatching (Ys # Yo). In practice, it intervenes especially
in the amplification circuits of broadband and low noise, where the mismatchings
are inevitable, especially at the ends of the band. In this case, a low Fo must be
accompanied by a small Rn.

3) Go and Bo are optimal values of the real and imaginary part of the Ys source
admittance. They almost always differ from the values that lead to maximum power
gain.

Remark

In practice, a matching circuit is introduced between the source and the quadripole
to change the source impedance.

It should be noted that the minimum noise matching (Ys = Yo) does not imply the
simultaneous adaptation from the point of view of the signal.
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Modeling the noise of a quadripole

* Lange's contribution

N=RG, (425a)

Lange defines Rn as a constant that shows how much the minimum noise factor
deteriorates when the input is closed on a non-optimal admittance.

In order to facilitate the microwave characterization, he proposes to use instead of
Rn the parameter N, defined in (4.25a), which leads to equivalent forms (4.25b).
The advantages offered by this new constant are the following.

1) The dual expressions (4.25b) are perfectly symmetrical.

2) N, like Fo, depends only on the internal transistor (chip) and not on the
connections associated with the encapsulation (provided they are lossless).

3) In a measurement system with transmission lines, N does not depend on the
position of the reference plane.

4) By connecting several identical devices in parallel, the values of N and Fo remain
unchanged (which is interesting for the concept of devices having different active
areas).

18



Modeling the noise of a quadripole

* The relationship between the signal / noise ratio and F

S %
—10log| s |_F 426
N g( 4KTR, J s (4.20)

acelasi Rs

The switch between the signal / noise ratio and the noise factor is made with Eq.

(4.26), where Vs is the actual value of the signal source and Rs is the internal
resistance..

19



Modeling the noise of a quadripole

* Noise surfaces

If the quadrupole studied is a transistor, it is interesting to represent the surface
defined by the fundamental noise equation (4.24).
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Modeling the noise of a quadripole

* Modelling in the frequency domain
* The noise matrix

(5,87) (8:5:)
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N=(SS")= (4.27)

(VI') = 47fS,, (iv) =247 S, (iv) (4.28)

rJ

(8,87)=85,=2A1'S, (ji) (429)

In this case, the sources of noise are described by their average powers in the band
Af centered on the frequency f. sources of noise with its adjoint vector (the adjoint
matrix is obtained as follows: 1) each element is replaced by the complex conjugate;
2) the matrix thus obtained is transposed) and then considering the average values,
Eq. (4.27).

Haus and Adles established that the average complex fluctuations of the cross
product between voltage v and current | depend on the spectral density of cross
power after Eq. (4.28).

Thus, in general, for two fluctuating quantities (denoted Si and Sj) where in addition
the statistical mean is equal to the temporal average, one can write Eq. (4.29).
Factor 2 is justified by the domain of power calculation, which is traditional (within
signal processing) between-) and + o=, while in noise theory the power spectral
density is defined only for positive frequencies.
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Modeling the noise of a quadripole

* Modelling in the frequency domain
* The correlation matrix

For two sources of some noise, denoted S1 and S2, the correlation matrix is
calculated using the relation (4.29), where S1 and S2 are the equivalent noise
generators of the adopted representation, Eq. (4.30).
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Modeling the noise of a quadripole

* Modelling in the frequency domain
* Particular cases

C, =2kTR{Z} (43la)

C, =2kTR{Y} (43la)

In the case of a passive quadripole, which only generates thermal noise. The
correlation matrices, depending on the open circuit impedance matrix Z or the short
circuit admittance matrix Y, are Eq. (4.31a, b)

If the quadripole is reduced to an elemental structure consisting of a single
resistance in series or a single conductor in parallel, the expressions (4.31) give the
possibility to reconstruct Nyquist's formulas for thermal noise.
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Modeling the noise of a quadripole

 Modelling in the frequency domain
* Chain representation
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The noise matrix is (4.32a), with the notations in the figure (4.4d) and considering CA
as the correlation matrix. This is given by the relation (4.32b), where CAO is the
normalized correlation matrix (4.32c).
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Modeling the noise of a quadripole

 Modelling in the frequency domain
* Chain representation

R =C, (433a)

2
Y =G + B, = Can {3[%]} +j3(ql?} (4.330)
CA 11 CAI 1 C.{l 1

F,=1+2(R(C,,)+C,,G,) (433c)

All "o

F:l+2m[%+("_”2 +C ), +C122RS] (4.33d)
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The calculation of the noise parameters is performed with Egs. (4.33)
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Modeling the noise of a quadripole

* Modelling in the frequency domain
* Admitance representation

(s} (ithr2)
(i) (i)
C, =2kIC) (4.34b)
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Coi G Va1 (yll - Yf‘or) R, R, |y21

N= =2A/C, (4.34a)

ERN y.;l (yll_Ycor)Rn

2
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In this case, the noise matrix is (4.34a). The correlation matrix is (4.34b), where the
normalized correlation matrix is in Eq. (4.34c)
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Modeling the noise of a quadripole

* Modelling in the frequency domain
 Admitance representation
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21
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The calculation of the noise parameters is performed with Egs. (4.35a-c), to which
we add the relations from Table (4.2) (diagram in ).
The noise factor is calculated with the relation (4.35d).
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