Subject no. 1

$1 . \mathrm{z}=0.735+\mathrm{j} \cdot 1.035 ; \mathrm{Y}=1 / 50 \Omega /(0.735+\mathrm{j} \cdot 1.035)=0.0091 \mathrm{~S}+\mathrm{j} \cdot(-0.0128) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(0.735+\mathrm{j} \cdot 1.035-1) /(0.735+\mathrm{j} \cdot 1.035+1)=0.150+\mathrm{j} \cdot(0.507)=0.529 \angle 73.5^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.65 \mathrm{~mW}=2.17 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=2.17 \mathrm{dBm}+9.3 \mathrm{~dB}=11.47 \mathrm{dBm}=14.04 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=11.47 \mathrm{dBm}-4.25 \mathrm{~dB}=7.22 \mathrm{dBm}=5.28 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=14.04 \mathrm{~mW}$ -
$5.28 \mathrm{~mW}=8.77 \mathrm{~mW}=9.43 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=9.43 \mathrm{dBm}+11.1 \mathrm{~dB}=20.53 \mathrm{dBm}=112.92 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.323+\mathrm{j} \cdot 0.314+1) /[1-(-0.323+\mathrm{j} \cdot 0.314)]=$ $21.56 \Omega+j \cdot 16.98 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=10.78 \Omega+\mathrm{j} \cdot 8.49 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.614+\mathrm{j} \cdot 0.225=0.654 \angle 159.8^{\circ}$;
c) Complex calculus from $L 7 / 2021, S 165 \div 169,2$ solutions for the match, $|\Gamma|=0.654, \arg (\Gamma)=159.8^{\circ}$ $\theta_{\mathrm{S} 1}=165.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.729 ; \theta_{\mathrm{P} 1}=120.0^{\circ}$ and $\theta_{\mathrm{S} 2}=34.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.729 ; \theta_{\mathrm{P} 2}=60.0^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>15.90 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.3+11.6=19.9 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.3+8.0=16.3 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.6+6.5=18.1 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.6+8.0=19.6 \mathrm{~dB}$ b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.92 \mathrm{~dB}=1.236, \mathrm{~F}_{2}=1.23 \mathrm{~dB}=1.327, \mathrm{~F}_{3}=0.50 \mathrm{~dB}=1.122, \mathrm{~F}_{4}=0.85 \mathrm{~dB}=1.216, \mathrm{G}_{3}=6.5 \mathrm{~dB}=4.467, \mathrm{G}_{4}=$ $8.0 \mathrm{~dB}=6.310$;
$\mathrm{F}(4,1)=1.216+(1.236-1) / 6.310=1.254=0.98 \mathrm{~dB} ; \mathrm{F}(3,2)=1.122+(1.327-1) / 4.467=1.195=0.77 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
1.4	$0.216+\mathrm{j} \cdot(-0.302)$	0.372	0.601	0.551
3.1	$-0.031+\mathrm{j} \cdot(-0.576)$	0.577	0.959	0.911

b) $\mu(1.4 \mathrm{GHz})<\mu(3.1 \mathrm{GHz})$ so the transistor has better stability at 3.1 GHz
c) we use S parameters for $\mathrm{f}=3.1 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=36.22=15.59 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.150, \mathrm{U} _$minus $=-1.217 \mathrm{~dB}$, U_plus $=1.416 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 2

$1 . \mathrm{z}=1.190+\mathrm{j} \cdot 1.110 ; \mathrm{Y}=1 / 50 \Omega /(1.190+\mathrm{j} \cdot 1.110)=0.0090 \mathrm{~S}+\mathrm{j} \cdot(-0.0084) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(1.190+\mathrm{j} \cdot 1.110-1) /(1.190+\mathrm{j} \cdot 1.110+1)=0.273+\mathrm{j} \cdot(0.368)=0.459 \angle 53.4^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=2.15 \mathrm{~mW}=3.32 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=3.32 \mathrm{dBm}+8.2 \mathrm{~dB}=11.52 \mathrm{dBm}=14.20 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=11.52 \mathrm{dBm}-6.25 \mathrm{~dB}=5.27 \mathrm{dBm}=3.37 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=14.20 \mathrm{~mW}$ -
$3.37 \mathrm{~mW}=10.84 \mathrm{~mW}=10.35 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=10.35 \mathrm{dBm}+10.5 \mathrm{~dB}=20.85 \mathrm{dBm}=121.59 \underline{\mathbf{m W}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.296+\mathrm{j} \cdot 0.365+1) /[1-(-0.296+\mathrm{j} \cdot 0.365)]=$ $21.49 \Omega+\mathrm{j} \cdot 20.13 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=10.74 \Omega+\mathrm{j} \cdot 10.07 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.602+\mathrm{j} \cdot 0.266=0.658 \angle 156.2^{\circ}$;
c) Complex calculus from L7/2021, S165 $\div 169,2$ solutions for the match, $|\Gamma|=0.658, \arg (\Gamma)=156.2^{\circ}$ $\theta_{\mathrm{S} 1}=167.5^{\circ} ; \operatorname{Im}\left(\mathrm{yS}_{\mathrm{S}}\right)=-1.748 ; \theta_{\mathrm{P} 1}=119.8^{\circ}$ and $\theta_{\mathrm{S} 2}=36.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.748 ; \theta_{\mathrm{P} 2}=60.2^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>14.60 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.4+10.5=18.9 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.4+7.4=15.8 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.5+5.8=16.3 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.5+7.4=17.9 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.97 \mathrm{~dB}=1.250, \mathrm{~F}_{2}=1.28 \mathrm{~dB}=1.343, \mathrm{~F}_{3}=0.53 \mathrm{~dB}=1.130, \mathrm{~F}_{4}=0.84 \mathrm{~dB}=1.213, \mathrm{G}_{3}=5.8 \mathrm{~dB}=3.802, \mathrm{G}_{4}=$ $7.4 \mathrm{~dB}=5.495$;
$\mathrm{F}(4,1)=1.213+(1.250-1) / 5.495=1.259=1.00 \mathrm{~dB} ; \mathrm{F}(3,2)=1.130+(1.343-1) / 3.802=1.220=0.86 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
0.1	$0.275+\mathrm{j} \cdot(0.048)$	0.280	0.112	0.095
1.5	$0.429+\mathrm{j} \cdot(-0.311)$	0.530	0.188	0.212

b) $\mu(0.1 \mathrm{GHz})<\mu(1.5 \mathrm{GHz})$ so the transistor has better stability at 1.5 GHz
c) we use S parameters for $\mathrm{f}=1.5 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1029.20=30.12 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.717$, U_minus $=-8.683 \mathrm{~dB}$, U_plus $=2.885 \mathrm{~dB}$
(L8/2021, S142) (irrelevant plus gain deviation, $\mathrm{U}>1$)

Subject no. 3

$1 . \mathrm{z}=1.260-\mathrm{j} \cdot 0.850 ; \mathrm{Y}=1 / 50 \Omega /(1.260-\mathrm{j} \cdot 0.850)=0.0109 \mathrm{~S}+\mathrm{j} \cdot(0.0074) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(1.260$ $-\mathrm{j} \cdot 0.850-1) /(1.260-\mathrm{j} \cdot 0.850+1)=0.225+\mathrm{j} \cdot(-0.292)=0.368 \angle-52.4^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.15 \mathrm{~mW}=0.61 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=0.61 \mathrm{dBm}+6.0 \mathrm{~dB}=6.61 \mathrm{dBm}=4.58 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}=$ $6.61 \mathrm{dBm}-4.85 \mathrm{~dB}=1.76 \mathrm{dBm}=1.50 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=4.58 \mathrm{~mW}-1.50 \mathrm{~mW}=$ $3.08 \mathrm{~mW}=4.88 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=4.88 \mathrm{dBm}+10.1 \mathrm{~dB}=14.98 \mathrm{dBm}=31.51 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.272+\mathrm{j} \cdot 0.688+1) /[1-(-0.272+\mathrm{j} \cdot 0.688)]=$ $10.82 \Omega+\mathrm{j} \cdot 32.90 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=5.41 \Omega+\mathrm{j} \cdot 16.45 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.659+\mathrm{j} \cdot 0.492=0.822 \angle 143.2^{\circ}$;
c) Complex calculus from L7/2021, S165 $\div 169,2$ solutions for the match, $|\Gamma|=0.822, \arg (\Gamma)=143.2^{\circ}$
$\theta_{\mathrm{S} 1}=1.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-2.889 ; \theta_{\mathrm{P} 1}=109.1^{\circ}$ and $\theta_{\mathrm{S} 2}=35.7^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=2.889 ; \theta_{\mathrm{P} 2}=70.9^{\circ}$, all lines with Z_{0} $=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>14.35 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.3+10.2=18.5 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.3+8.2=16.5 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.2+5.8=16.0 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.2+8.2=18.4 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.05 \mathrm{~dB}=1.274, \mathrm{~F}_{2}=1.20 \mathrm{~dB}=1.318, \mathrm{~F}_{3}=0.57 \mathrm{~dB}=1.140, \mathrm{~F}_{4}=0.78 \mathrm{~dB}=1.197, \mathrm{G}_{3}=5.8 \mathrm{~dB}=3.802, \mathrm{G}_{4}=$ $8.2 \mathrm{~dB}=6.607$;
$\mathrm{F}(4,1)=1.197+(1.274-1) / 6.607=1.238=0.93 \mathrm{~dB} ; \mathrm{F}(3,2)=1.140+(1.318-1) / 3.802=1.224=0.88 \mathrm{~dB}$; $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
3.1	$-0.058+\mathrm{j} \cdot(-0.345)$	0.350	0.952	0.970
2.0	$0.355+\mathrm{j} \cdot(-0.385)$	0.523	0.229	0.836

b) $\mu^{\prime}(3.1 \mathrm{GHz})>\mu^{\prime}(2.0 \mathrm{GHz})$ so the transistor has better stability at 3.1 GHz
c) we use S parameters for $\mathrm{f}=3.1 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=37.08=15.69 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.044, \mathrm{U} _$minus $=-0.372 \mathrm{~dB}, \mathrm{U} _$plus $=0.389 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 4

1. $\mathrm{z}=1.045-\mathrm{j} \cdot 0.955 ; \mathrm{Y}=1 / 50 \Omega /(1.045-\mathrm{j} \cdot 0.955)=0.0104 \mathrm{~S}+\mathrm{j} \cdot(0.0095) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(1.045$ $-\mathrm{j} \cdot 0.955-1) /(1.045-\mathrm{j} \cdot 0.955+1)=0.197+\mathrm{j} \cdot(-0.375)=0.424 \angle-62.3^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.80 \mathrm{~mW}=2.55 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=2.55 \mathrm{dBm}+9.5 \mathrm{~dB}=12.05 \mathrm{dBm}=16.04 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=12.05 \mathrm{dBm}-4.25 \mathrm{~dB}=7.80 \mathrm{dBm}=6.03 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=16.04 \mathrm{~mW}$ -
$6.03 \mathrm{~mW}=10.01 \mathrm{~mW}=10.01 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=10.01 \mathrm{dBm}+9.4 \mathrm{~dB}=19.41 \mathrm{dBm}=87.21 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.186+\mathrm{j} \cdot 0.223+1) /[1-(-0.186+\mathrm{j} \cdot 0.223)]=$ $31.44 \Omega+\mathrm{j} \cdot 15.31 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=15.72 \Omega+\mathrm{j} \cdot 7.66 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.501+\mathrm{j} \cdot 0.175=0.531 \angle 160.8^{\circ}$;
c) Complex calculus from L7/2021, S165 $\div 169$, 2 solutions for the match, $|\Gamma|=0.531$, $\arg (\Gamma)=160.8^{\circ}$ $\theta_{\mathrm{S} 1}=160.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.253 ; \theta_{\mathrm{P} 1}=128.6^{\circ}$ and $\theta_{\mathrm{S} 2}=38.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.253 ; \theta_{\mathrm{P} 2}=51.4^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>15.05 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.0+11.2=19.2 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.0+8.6=16.6 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.2+5.7=16.9 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.2+8.6=19.8 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.04 \mathrm{~dB}=1.271, \mathrm{~F}_{2}=1.18 \mathrm{~dB}=1.312, \mathrm{~F}_{3}=0.66 \mathrm{~dB}=1.164, \mathrm{~F}_{4}=0.85 \mathrm{~dB}=1.216, \mathrm{G}_{3}=5.7 \mathrm{~dB}=3.715, \mathrm{G}_{4}=$ $8.6 \mathrm{~dB}=7.244$;
$\mathrm{F}(4,1)=1.216+(1.271-1) / 7.244=1.254=0.98 \mathrm{~dB} ; \mathrm{F}(3,2)=1.164+(1.312-1) / 3.715=1.248=0.96 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
2.5	$0.046+\mathrm{j} \cdot(-0.344)$	0.347	0.862	0.825
3.2	$0.138+\mathrm{j} \cdot(-0.486)$	0.505	0.314	0.344

b) $\mu(2.5 \mathrm{GHz})>\mu(3.2 \mathrm{GHz})$ so the transistor has better stability at 2.5 GHz
c) we use S parameters for $\mathrm{f}=2.5 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=55.64=17.45 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.063$, U_minus $=-0.530 \mathrm{~dB}$, U_plus $=0.564 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 5

$1 . \mathrm{z}=1.225+\mathrm{j} \cdot 1.045 ; \mathrm{Y}=1 / 50 \Omega /(1.225+\mathrm{j} \cdot 1.045)=0.0094 \mathrm{~S}+\mathrm{j} \cdot(-0.0081) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(1.225+\mathrm{j} \cdot 1.045-1) /(1.225+\mathrm{j} \cdot 1.045+1)=0.264+\mathrm{j} \cdot(0.346)=0.435 \angle 52.7^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.15 \mathrm{~mW}=0.61 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=0.61 \mathrm{dBm}+8.9 \mathrm{~dB}=9.51 \mathrm{dBm}=8.93 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}=$ $9.51 \mathrm{dBm}-5.50 \mathrm{~dB}=4.01 \mathrm{dBm}=2.52 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=8.93 \mathrm{~mW}-2.52 \mathrm{~mW}=$ $6.41 \mathrm{~mW}=8.07 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=8.07 \mathrm{dBm}+11.9 \mathrm{~dB}=19.97 \mathrm{dBm}=99.29 \underline{\mathbf{m W}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.468+\mathrm{j} \cdot 0.605+1) /[1-(-0.468+\mathrm{j} \cdot 0.605)]=$ $8.23 \Omega+\mathrm{j} \cdot 24.00 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=4.11 \Omega+\mathrm{j} \cdot 12.00 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.761+\mathrm{j} \cdot 0.391=0.856 \angle 152.8^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.856, \arg (\Gamma)=152.8^{\circ}$ $\theta_{\mathrm{S} 1}=178.0^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-3.307 ; \theta_{\mathrm{P} 1}=106.8^{\circ}$ and $\theta_{\mathrm{S} 2}=29.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=3.307 ; \theta_{\mathrm{P} 2}=73.2^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>17.15 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.9+11.6=20.5 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.9+8.6=17.5 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.6+6.9=18.5 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.6+8.6=20.2 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.93 \mathrm{~dB}=1.239, \mathrm{~F}_{2}=1.20 \mathrm{~dB}=1.318, \mathrm{~F}_{3}=0.64 \mathrm{~dB}=1.159, \mathrm{~F}_{4}=0.71 \mathrm{~dB}=1.178, \mathrm{G}_{3}=6.9 \mathrm{~dB}=4.898, \mathrm{G}_{4}=$ $8.6 \mathrm{~dB}=7.244$;
$\mathrm{F}(4,1)=1.178+(1.239-1) / 7.244=1.211=0.83 \mathrm{~dB} ; \mathrm{F}(3,2)=1.159+(1.318-1) / 4.898=1.224=0.88 \mathrm{~dB} ;$ $\mathrm{F}(4,1)<\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{4 , 1}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
0.5	$0.437+\mathrm{j} \cdot(0.045)$	0.439	0.349	0.272
2.1	$0.337+\mathrm{j} \cdot(-0.397)$	0.521	0.234	0.263

b) $\mu(0.5 \mathrm{GHz})>\mu(2.1 \mathrm{GHz})$ so the transistor has better stability at 0.5 GHz
c) we use S parameters for $\mathrm{f}=0.5 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1049.68=30.21 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.474, \mathrm{U} _$minus $=-3.372 \mathrm{~dB}$, U_plus $=5.585 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 6

$1 . \mathrm{z}=0.800-\mathrm{j} \cdot 1.065 ; \mathrm{Y}=1 / 50 \Omega /(0.800-\mathrm{j} \cdot 1.065)=0.0090 \mathrm{~S}+\mathrm{j} \cdot(0.0120) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.800$ $-\mathrm{j} \cdot 1.065-1) /(0.800-\mathrm{j} \cdot 1.065+1)=0.177+\mathrm{j} \cdot(-0.487)=0.518 \angle-70.0^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=2.60 \mathrm{~mW}=4.15 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=4.15 \mathrm{dBm}+6.4 \mathrm{~dB}=10.55 \mathrm{dBm}=11.35 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=10.55 \mathrm{dBm}-6.85 \mathrm{~dB}=3.70 \mathrm{dBm}=2.34 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=11.35 \mathrm{~mW}-$
$2.34 \mathrm{~mW}=9.01 \mathrm{~mW}=9.54 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=9.54 \mathrm{dBm}+11.9 \mathrm{~dB}=21.44 \mathrm{dBm}=139.48 \underline{\mathbf{m W}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.184+\mathrm{j} \cdot 0.176+1) /[1-(0.184+\mathrm{j} \cdot 0.176)]=$ $67.10 \Omega+\mathrm{j} \cdot 25.26 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=33.55 \Omega+\mathrm{j} \cdot 12.63 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.170+\mathrm{j} \cdot 0.177=0.245 \angle 133.9^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.245, \arg (\Gamma)=133.9^{\circ}$
$\theta_{\mathrm{S} 1}=165.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-0.506 ; \theta_{\mathrm{P} 1}=153.1^{\circ}$ and $\theta_{\mathrm{S} 2}=61.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.506 ; \theta_{\mathrm{P} 2}=26.9^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>15.45 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.3+10.3=18.6 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.3+7.5=15.8 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.3+6.1=16.4 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.3+7.5=17.8 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.94 \mathrm{~dB}=1.242, \mathrm{~F}_{2}=1.24 \mathrm{~dB}=1.330, \mathrm{~F}_{3}=0.66 \mathrm{~dB}=1.164, \mathrm{~F}_{4}=0.89 \mathrm{~dB}=1.227, \mathrm{G}_{3}=6.1 \mathrm{~dB}=4.074, \mathrm{G}_{4}=$ $7.5 \mathrm{~dB}=5.623$;
$\mathrm{F}(4,1)=1.227+(1.242-1) / 5.623=1.270=1.04 \mathrm{~dB} ; \mathrm{F}(3,2)=1.164+(1.330-1) / 4.074=1.245=0.95 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
1.2	$0.482+\mathrm{j} \cdot(-0.208)$	0.525	0.641	0.723
2.8	$0.215+\mathrm{j} \cdot(-0.465)$	0.512	0.285	0.802

b) $\mu^{\prime}(1.2 \mathrm{GHz})<\mu^{\prime}(2.8 \mathrm{GHz})$ so the transistor has better stability at 2.8 GHz
c) we use S parameters for $\mathrm{f}=2.8 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=373.35=25.72 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.070, \mathrm{U} _$minus $=-6.319 \mathrm{~dB}, \mathrm{U} _$plus $=23.118 \mathrm{~dB}$ (L8/2021, S142) (irrelevant plus gain deviation, $\mathrm{U}>1$)

Subject no. 7

$1 . \mathrm{z}=1.035+\mathrm{j} \cdot 0.745 ; \mathrm{Y}=1 / 50 \Omega /(1.035+\mathrm{j} \cdot 0.745)=0.0127 \mathrm{~S}+\mathrm{j} \cdot(-0.0092) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(1.035+\mathrm{j} \cdot 0.745-1) /(1.035+\mathrm{j} \cdot 0.745+1)=0.133+\mathrm{j} \cdot(0.317)=0.344 \angle 67.2^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=4.05 \mathrm{~mW}=6.07 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=6.07 \mathrm{dBm}+8.7 \mathrm{~dB}=14.77 \mathrm{dBm}=30.02 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=14.77 \mathrm{dBm}-5.50 \mathrm{~dB}=9.27 \mathrm{dBm}=8.46 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=30.02 \mathrm{~mW}$ -
$8.46 \mathrm{~mW}=21.56 \mathrm{~mW}=13.34 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=13.34 \mathrm{dBm}+10.3 \mathrm{~dB}=23.64 \mathrm{dBm}=231.03 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.699+\mathrm{j} \cdot 0.258+1) /[1-(-0.699+\mathrm{j} \cdot 0.258)]=$ $7.53 \Omega+\mathrm{j} \cdot 8.74 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=3.77 \Omega+\mathrm{j} \cdot 4.37 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.848+\mathrm{j} \cdot 0.150=0.861 \angle 170.0^{\circ}$;
c) Complex calculus from $L 7 / 2021, S 165 \div 169,2$ solutions for the match, $|\Gamma|=0.861, \arg (\Gamma)=170.0^{\circ}$ $\theta_{\mathrm{S} 1}=169.7^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-3.384 ; \theta_{\mathrm{P} 1}=106.5^{\circ}$ and $\theta_{\mathrm{S} 2}=20.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=3.384 ; \theta_{\mathrm{P} 2}=73.5^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations $(G>13.60 \mathrm{~dB})$: $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.0+11.4=19.4 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.0+7.2=15.2 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.4+5.2=16.6 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.4+7.2=18.6 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.00 \mathrm{~dB}=1.259, \mathrm{~F}_{2}=1.19 \mathrm{~dB}=1.315, \mathrm{~F}_{3}=0.52 \mathrm{~dB}=1.127, \mathrm{~F}_{4}=0.74 \mathrm{~dB}=1.186, \mathrm{G}_{3}=5.2 \mathrm{~dB}=3.311, \mathrm{G}_{4}=$ $7.2 \mathrm{~dB}=5.248$;
$\mathrm{F}(4,1)=1.186+(1.259-1) / 5.248=1.235=0.92 \mathrm{~dB} ; \mathrm{F}(3,2)=1.127+(1.315-1) / 3.311=1.222=0.87 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
1.8	$0.157+\mathrm{j} \cdot(-0.322)$	0.358	0.715	0.665
3.5	$0.081+\mathrm{j} \cdot(-0.492)$	0.498	0.345	0.375

b) $\mu(1.8 \mathrm{GHz})>\mu(3.5 \mathrm{GHz})$ so the transistor has better stability at 1.8 GHz
c) we use S parameters for $\mathrm{f}=1.8 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=104.32=20.18 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.108$, U_minus $=-0.888 \mathrm{~dB}$, U_plus $=0.989 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 8

$1 . \mathrm{z}=0.970+\mathrm{j} \cdot 1.190 ; \mathrm{Y}=1 / 50 \Omega /(0.970+\mathrm{j} \cdot 1.190)=0.0082 \mathrm{~S}+\mathrm{j} \cdot(-0.0101) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(0.970+\mathrm{j} \cdot 1.190-1) /(0.970+\mathrm{j} \cdot 1.190+1)=0.256+\mathrm{j} \cdot(0.449)=0.517 \angle 60.3^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=3.10 \mathrm{~mW}=4.91 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=4.91 \mathrm{dBm}+9.0 \mathrm{~dB}=13.91 \mathrm{dBm}=24.62 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=13.91 \mathrm{dBm}-5.20 \mathrm{~dB}=8.71 \mathrm{dBm}=7.44 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=24.62 \mathrm{~mW}$ -
$7.44 \mathrm{~mW}=17.19 \mathrm{~mW}=12.35 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=12.35 \mathrm{dBm}+8.3 \mathrm{~dB}=20.65 \mathrm{dBm}=116.20 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.296+\mathrm{j} \cdot 0.359+1) /[1-(-0.296+\mathrm{j} \cdot 0.359)]=$ $21.66 \Omega+j \cdot 19.85 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $Z / 2=10.83 \Omega+j \cdot 9.93 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.601+\mathrm{j} \cdot 0.261=0.656 \angle 156.5^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.656, \arg (\Gamma)=156.5^{\circ}$
$\theta_{\mathrm{S} 1}=167.2^{\circ} ; \operatorname{Im}\left(\mathrm{yS}_{\mathrm{S}}\right)=-1.736 ; \theta_{\mathrm{P} 1}=119.9^{\circ}$ and $\theta_{\mathrm{S} 2}=36.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.736 ; \theta_{\mathrm{P} 2}=60.1^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>15.60 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.5+11.1=19.6 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.5+8.8=17.3 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.1+5.7=16.8 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.1+8.8=19.9 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.95 \mathrm{~dB}=1.245, \mathrm{~F}_{2}=1.25 \mathrm{~dB}=1.334, \mathrm{~F}_{3}=0.54 \mathrm{~dB}=1.132, \mathrm{~F}_{4}=0.79 \mathrm{~dB}=1.199, \mathrm{G}_{3}=5.7 \mathrm{~dB}=3.715, \mathrm{G}_{4}=$ $8.8 \mathrm{~dB}=7.586$;
$\mathrm{F}(4,1)=1.199+(1.245-1) / 7.586=1.232=0.91 \mathrm{~dB} ; \mathrm{F}(3,2)=1.132+(1.334-1) / 3.715=1.222=0.87 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
2.8	$0.076+\mathrm{j} \cdot(-0.565)$	0.570	0.933	0.866
0.8	$0.508+\mathrm{j} \cdot(-0.179)$	0.539	0.111	0.127

b) $\mu(2.8 \mathrm{GHz})>\mu(0.8 \mathrm{GHz})$ so the transistor has better stability at 2.8 GHz
c) we use S parameters for $\mathrm{f}=2.8 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=43.68=16.40 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.150, \mathrm{U} _$minus $=-1.212 \mathrm{~dB}$, U_plus $=1.408 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 9

$1 . \mathrm{z}=0.945-\mathrm{j} \cdot 1.160 ; \mathrm{Y}=1 / 50 \Omega /(0.945-\mathrm{j} \cdot 1.160)=0.0084 \mathrm{~S}+\mathrm{j} \cdot(0.0104) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.945$ $-\mathrm{j} \cdot 1.160-1) /(0.945-\mathrm{j} \cdot 1.160+1)=0.242+\mathrm{j} \cdot(-0.452)=0.513 \angle-61.9^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=2.90 \mathrm{~mW}=4.62 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=4.62 \mathrm{dBm}+9.4 \mathrm{~dB}=14.02 \mathrm{dBm}=25.26 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=14.02 \mathrm{dBm}-4.30 \mathrm{~dB}=9.72 \mathrm{dBm}=9.38 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=25.26 \mathrm{~mW}$ -
$9.38 \mathrm{~mW}=15.87 \mathrm{~mW}=12.01 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=12.01 \mathrm{dBm}+8.5 \mathrm{~dB}=20.51 \mathrm{dBm}=112.38 \underline{\mathbf{m W}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.119+\mathrm{j} \cdot 0.398+1) /[1-(0.119+\mathrm{j} \cdot 0.398)]=$ $44.27 \Omega+\mathrm{j} \cdot 42.59 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $Z / 2=22.13 \Omega+j \cdot 21.29 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.275+\mathrm{j} \cdot 0.376=0.466 \angle 126.2^{\circ}$;
c) Complex calculus from L7/2021, S165 $\div 169,2$ solutions for the match, $|\Gamma|=0.466, \arg (\Gamma)=126.2^{\circ}$
$\theta_{\mathrm{S} 1}=175.8^{\circ} ; \operatorname{Im}\left(\mathrm{yS}_{\mathrm{S}}\right)=-1.054 ; \theta_{\mathrm{P} 1}=133.5^{\circ}$ and $\theta_{\mathrm{S} 2}=58.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.054 ; \theta_{\mathrm{P} 2}=46.5^{\circ}$, all lines with $\mathrm{Z}_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>15.95 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.3+10.9=20.2 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.3+8.5=17.8 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.9+5.6=16.5 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.9+8.5=19.4 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.94 \mathrm{~dB}=1.242, \mathrm{~F}_{2}=1.15 \mathrm{~dB}=1.303, \mathrm{~F}_{3}=0.66 \mathrm{~dB}=1.164, \mathrm{~F}_{4}=0.86 \mathrm{~dB}=1.219, \mathrm{G}_{3}=5.6 \mathrm{~dB}=3.631, \mathrm{G}_{4}=$ $8.5 \mathrm{~dB}=7.079$;
$\mathrm{F}(4,1)=1.219+(1.242-1) / 7.079=1.253=0.98 \mathrm{~dB} ; \mathrm{F}(3,2)=1.164+(1.303-1) / 3.631=1.248=0.96 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
1.8	$0.384+\mathrm{j} \cdot(-0.394)$	0.550	0.795	0.832
2.5	$0.270+\mathrm{j} \cdot(-0.440)$	0.516	0.262	0.811

b) $\mu^{\prime}(1.8 \mathrm{GHz})>\mu^{\prime}(2.5 \mathrm{GHz})$ so the transistor has better stability at 1.8 GHz
c) we use S parameters for $\mathrm{f}=1.8 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=99.35=19.97 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.180, \mathrm{U} _$minus $=-1.441 \mathrm{~dB}, \mathrm{U} _$plus $=1.729 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 10

1. $\mathrm{z}=0.980+\mathrm{j} \cdot 0.740 ; \mathrm{Y}=1 / 50 \Omega /(0.980+\mathrm{j} \cdot 0.740)=0.0130 \mathrm{~S}+\mathrm{j} \cdot(-0.0098) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(0.980+\mathrm{j} \cdot 0.740-1) /(0.980+\mathrm{j} \cdot 0.740+1)=0.114+\mathrm{j} \cdot(0.331)=0.350 \angle 71.1^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.60 \mathrm{~mW}=2.04 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=2.04 \mathrm{dBm}+7.5 \mathrm{~dB}=9.54 \mathrm{dBm}=9.00 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}=$ $9.54 \mathrm{dBm}-4.05 \mathrm{~dB}=5.49 \mathrm{dBm}=3.54 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=9.00 \mathrm{~mW}-3.54 \mathrm{~mW}=$ $5.46 \mathrm{~mW}=7.37 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=7.37 \mathrm{dBm}+8.7 \mathrm{~dB}=16.07 \mathrm{dBm}=40.45 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.065+\mathrm{j} \cdot 0.637+1) /[1-(-0.065+\mathrm{j} \cdot 0.637)]=$ $19.16 \Omega+\mathrm{j} \cdot 41.36 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=9.58 \Omega+\mathrm{j} \cdot 20.68 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.498+\mathrm{j} \cdot 0.520=0.720 \angle 133.8^{\circ}$;
c) Complex calculus from $L 7 / 2021, S 165 \div 169,2$ solutions for the match, $|\Gamma|=0.720, \arg (\Gamma)=133.8^{\circ}$
$\theta_{\mathrm{S} 1}=1.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-2.075 ; \theta_{\mathrm{P} 1}=115.7^{\circ}$ and $\theta_{\mathrm{S} 2}=45.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=2.075 ; \theta_{\mathrm{P} 2}=64.3^{\circ}$, all lines with Z_{0} $=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>16.35 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.3+10.2=19.5 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.3+7.4=16.7 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.2+6.9=17.1 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.2+7.4=17.6 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.91 \mathrm{~dB}=1.233, \mathrm{~F}_{2}=1.20 \mathrm{~dB}=1.318, \mathrm{~F}_{3}=0.64 \mathrm{~dB}=1.159, \mathrm{~F}_{4}=0.89 \mathrm{~dB}=1.227, \mathrm{G}_{3}=6.9 \mathrm{~dB}=4.898, \mathrm{G}_{4}=$ $7.4 \mathrm{~dB}=5.495$;
$\mathrm{F}(4,1)=1.227+(1.233-1) / 5.495=1.270=1.04 \mathrm{~dB} ; \mathrm{F}(3,2)=1.159+(1.318-1) / 4.898=1.224=0.88 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
1.6	$0.187+\mathrm{j} \cdot(-0.311)$	0.363	0.661	0.611
4.1	$-0.022+\mathrm{j} \cdot(-0.487)$	0.488	0.399	0.428

b) $\mu(1.6 \mathrm{GHz})>\mu(4.1 \mathrm{GHz})$ so the transistor has better stability at 1.6 GHz
c) we use S parameters for $\mathrm{f}=1.6 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=131.20=21.18 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.131, \mathrm{U} _$minus $=-1.067 \mathrm{~dB}, \mathrm{U} _$plus $=1.217 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 11

$1 . \mathrm{z}=0.750+\mathrm{j} \cdot 1.105 ; \mathrm{Y}=1 / 50 \Omega /(0.750+\mathrm{j} \cdot 1.105)=0.0084 \mathrm{~S}+\mathrm{j} \cdot(-0.0124) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(0.750+\mathrm{j} \cdot 1.105-1) /(0.750+\mathrm{j} \cdot 1.105+1)=0.183+\mathrm{j} \cdot(0.516)=0.547 \angle 70.5^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=3.20 \mathrm{~mW}=5.05 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=5.05 \mathrm{dBm}+7.3 \mathrm{~dB}=12.35 \mathrm{dBm}=17.19 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=12.35 \mathrm{dBm}-6.60 \mathrm{~dB}=5.75 \mathrm{dBm}=3.76 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=17.19 \mathrm{~mW}$ -
$3.76 \mathrm{~mW}=13.43 \mathrm{~mW}=11.28 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=11.28 \mathrm{dBm}+10.3 \mathrm{~dB}=21.58 \mathrm{dBm}=143.86 \underline{\mathbf{m W}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.713+\mathrm{j} \cdot 0.180+1) /[1-(0.713+\mathrm{j} \cdot 0.180)]=$ $200.07 \Omega+\mathrm{j} \cdot 156.84 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=100.03 \Omega+\mathrm{j} \cdot 78.42 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=0.476+\mathrm{j} \cdot 0.274=0.549 \angle 29.9^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.549, \arg (\Gamma)=29.9^{\circ}$
$\theta_{\mathrm{S} 1}=46.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.315 ; \theta_{\mathrm{P} 1}=127.2^{\circ}$ and $\theta_{\mathrm{S} 2}=103.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.315 ; \theta_{\mathrm{P} 2}=52.8^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>16.40 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.7+10.6=20.3 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.7+8.3=18.0 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.6+6.0=16.6 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.6+8.3=18.9 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.99 \mathrm{~dB}=1.256, \mathrm{~F}_{2}=1.18 \mathrm{~dB}=1.312, \mathrm{~F}_{3}=0.65 \mathrm{~dB}=1.161, \mathrm{~F}_{4}=0.77 \mathrm{~dB}=1.194, \mathrm{G}_{3}=6.0 \mathrm{~dB}=3.981, \mathrm{G}_{4}=$ $8.3 \mathrm{~dB}=6.761$;
$\mathrm{F}(4,1)=1.194+(1.256-1) / 6.761=1.232=0.91 \mathrm{~dB} ; \mathrm{F}(3,2)=1.161+(1.312-1) / 3.981=1.240=0.93 \mathrm{~dB} ;$ $\mathrm{F}(4,1)<\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{4 , 1}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
1.4	$0.461+\mathrm{j} \cdot(-0.278)$	0.538	0.699	0.574
2.4	$0.289+\mathrm{j} \cdot(-0.431)$	0.519	0.254	0.278

b) $\mu(1.4 \mathrm{GHz})>\mu(2.4 \mathrm{GHz})$ so the transistor has better stability at 1.4 GHz
c) we use S parameters for $\mathrm{f}=1.4 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=160.09=22.04 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.215$, U_minus $=-1.691 \mathrm{~dB}, \mathrm{U} _$plus $=2.101 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 12

1. $\mathrm{z}=0.750-\mathrm{j} \cdot 0.940 ; \mathrm{Y}=1 / 50 \Omega /(0.750-\mathrm{j} \cdot 0.940)=0.0104 \mathrm{~S}+\mathrm{j} \cdot(0.0130) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.750$ $-\mathrm{j} \cdot 0.940-1) /(0.750-\mathrm{j} \cdot 0.940+1)=0.113+\mathrm{j} \cdot(-0.476)=0.490 \angle-76.7^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=3.95 \mathrm{~mW}=5.97 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=5.97 \mathrm{dBm}+6.9 \mathrm{~dB}=12.87 \mathrm{dBm}=19.35 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=12.87 \mathrm{dBm}-4.70 \mathrm{~dB}=8.17 \mathrm{dBm}=6.56 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=19.35 \mathrm{~mW}$ -
$6.56 \mathrm{~mW}=12.79 \mathrm{~mW}=11.07 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=11.07 \mathrm{dBm}+11.2 \mathrm{~dB}=22.27 \mathrm{dBm}=168.62 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.379+\mathrm{j} \cdot 0.251+1) /[1-(-0.379+\mathrm{j} \cdot 0.251)]=$ $20.19 \Omega+\mathrm{j} \cdot 12.78 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $Z / 2=10.10 \Omega+\mathrm{j} \cdot 6.39 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.645+\mathrm{j} \cdot 0.175=0.669 \angle 164.8^{\circ}$;
c) Complex calculus from L7/2021, S165 $\div 169,2$ solutions for the match, $|\Gamma|=0.669, \arg (\Gamma)=164.8^{\circ}$ $\theta_{\mathrm{S} 1}=163.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.799 ; \theta_{\mathrm{P} 1}=119.1^{\circ}$ and $\theta_{\mathrm{S} 2}=31.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.799 ; \theta_{\mathrm{P} 2}=60.9^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>16.60 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.0+10.8=19.8 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.0+8.0=17.0 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.8+6.0=16.8 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.8+8.0=18.8 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.97 \mathrm{~dB}=1.250, \mathrm{~F}_{2}=1.13 \mathrm{~dB}=1.297, \mathrm{~F}_{3}=0.51 \mathrm{~dB}=1.125, \mathrm{~F}_{4}=0.83 \mathrm{~dB}=1.211, \mathrm{G}_{3}=6.0 \mathrm{~dB}=3.981, \mathrm{G}_{4}=$ $8.0 \mathrm{~dB}=6.310$;
$\mathrm{F}(4,1)=1.211+(1.250-1) / 6.310=1.250=0.97 \mathrm{~dB} ; \mathrm{F}(3,2)=1.125+(1.297-1) / 3.981=1.199=0.79 \mathrm{~dB}$; $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
1.6	$0.424+\mathrm{j} \cdot(-0.335)$	0.541	0.754	0.802
2.6	$0.252+\mathrm{j} \cdot(-0.449)$	0.515	0.270	0.809

b) $\mu^{\prime}(1.6 \mathrm{GHz})<\mu^{\prime}(2.6 \mathrm{GHz})$ so the transistor has better stability at 2.6 GHz
c) we use S parameters for $\mathrm{f}=2.6 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=421.63=26.25 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.144, \mathrm{U} _$minus $=-6.625 \mathrm{~dB}, \mathrm{U} _$plus $=16.819 \mathrm{~dB}$ (L8/2021, S142) (irrelevant plus gain deviation, $\mathrm{U}>1$)

Subject no. 13

1. $\mathrm{z}=0.890-\mathrm{j} \cdot 0.950 ; \mathrm{Y}=1 / 50 \Omega /(0.890-\mathrm{j} \cdot 0.950)=0.0105 \mathrm{~S}+\mathrm{j} \cdot(0.0112) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.890$ $-\mathrm{j} \cdot 0.950-1) /(0.890-\mathrm{j} \cdot 0.950+1)=0.155+\mathrm{j} \cdot(-0.425)=0.452 \angle-69.9^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=3.25 \mathrm{~mW}=5.12 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=5.12 \mathrm{dBm}+6.6 \mathrm{~dB}=11.72 \mathrm{dBm}=14.86 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=11.72 \mathrm{dBm}-5.25 \mathrm{~dB}=6.47 \mathrm{dBm}=4.43 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=14.86 \mathrm{~mW}$ -
$4.43 \mathrm{~mW}=10.42 \mathrm{~mW}=10.18 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=10.18 \mathrm{dBm}+11.9 \mathrm{~dB}=22.08 \mathrm{dBm}=161.39 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.062+\mathrm{j} \cdot 0.446+1) /[1-(0.062+\mathrm{j} \cdot 0.446)]=$ $36.95 \Omega+\mathrm{j} \cdot 41.34 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=18.48 \Omega+\mathrm{j} \cdot 20.67 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.338+\mathrm{j} \cdot 0.404=0.527 \angle 129.9^{\circ}$;
c) Complex calculus from $\mathrm{L} 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.527, \arg (\Gamma)=129.9^{\circ}$
$\theta_{\mathrm{S} 1}=175.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.240 ; \theta_{\mathrm{P} 1}=128.9^{\circ}$ and $\theta_{\mathrm{S} 2}=54.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.240 ; \theta_{\mathrm{P} 2}=51.1^{\circ}$, all lines with $\mathrm{Z}_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>14.65 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.2+10.1=19.3 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.2+7.1=16.3 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.1+5.3=15.4 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.1+7.1=17.2 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.00 \mathrm{~dB}=1.259, \mathrm{~F}_{2}=1.21 \mathrm{~dB}=1.321, \mathrm{~F}_{3}=0.59 \mathrm{~dB}=1.146, \mathrm{~F}_{4}=0.70 \mathrm{~dB}=1.175, \mathrm{G}_{3}=5.3 \mathrm{~dB}=3.388, \mathrm{G}_{4}=$ $7.1 \mathrm{~dB}=5.129$;
$\mathrm{F}(4,1)=1.175+(1.259-1) / 5.129=1.225=0.88 \mathrm{~dB} ; \mathrm{F}(3,2)=1.146+(1.321-1) / 3.388=1.240=0.94 \mathrm{~dB}$; $\mathrm{F}(4,1)<\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{4 , 1}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
1.2	$0.250+\mathrm{j} \cdot(-0.294)$	0.386	0.538	0.489
3.8	$0.027+\mathrm{j} \cdot(-0.492)$	0.493	0.371	0.402

b) $\mu(1.2 \mathrm{GHz})>\mu(3.8 \mathrm{GHz})$ so the transistor has better stability at 1.2 GHz
c) we use S parameters for $\mathrm{f}=1.2 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=232.30=23.66 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.213$, U_minus $=-1.674 \mathrm{~dB}$, U_plus $=2.075 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 14

1. $\mathrm{z}=0.830-\mathrm{j} \cdot 0.955 ; \mathrm{Y}=1 / 50 \Omega /(0.830-\mathrm{j} \cdot 0.955)=0.0104 \mathrm{~S}+\mathrm{j} \cdot(0.0119) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.830$ $-\mathrm{j} \cdot 0.955-1) /(0.830-\mathrm{j} \cdot 0.955+1)=0.141+\mathrm{j} \cdot(-0.448)=0.470 \angle-72.5^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=2.55 \mathrm{~mW}=4.07 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=4.07 \mathrm{dBm}+6.4 \mathrm{~dB}=10.47 \mathrm{dBm}=11.13 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=10.47 \mathrm{dBm}-4.10 \mathrm{~dB}=6.37 \mathrm{dBm}=4.33 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=11.13 \mathrm{~mW}$ -
$4.33 \mathrm{~mW}=6.80 \mathrm{~mW}=8.33 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=8.33 \mathrm{dBm}+9.4 \mathrm{~dB}=17.73 \mathrm{dBm}=59.23 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.006+\mathrm{j} \cdot 0.340+1) /[1-(0.006+\mathrm{j} \cdot 0.340)]=$ $40.07 \Omega+\mathrm{j} \cdot 30.81 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $Z / 2=20.03 \Omega+j \cdot 15.40 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.362+\mathrm{j} \cdot 0.300=0.470 \angle 140.4^{\circ}$;
c) Complex calculus from $L 7 / 2021, S 165 \div 169,2$ solutions for the match, $|\Gamma|=0.470, \arg (\Gamma)=140.4^{\circ}$ $\theta_{\mathrm{S} 1}=168.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.065 ; \theta_{\mathrm{P} 1}=133.2^{\circ}$ and $\theta_{\mathrm{S} 2}=50.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.065 ; \theta_{\mathrm{P} 2}=46.8^{\circ}$, all lines with $\mathrm{Z}_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>14.70 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.4+10.5=19.9 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.4+8.1=17.5 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.5+5.1=15.6 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.5+8.1=18.6 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.04 \mathrm{~dB}=1.271, \mathrm{~F}_{2}=1.25 \mathrm{~dB}=1.334, \mathrm{~F}_{3}=0.62 \mathrm{~dB}=1.153, \mathrm{~F}_{4}=0.77 \mathrm{~dB}=1.194, \mathrm{G}_{3}=5.1 \mathrm{~dB}=3.236, \mathrm{G}_{4}=$ $8.1 \mathrm{~dB}=6.457$;
$\mathrm{F}(4,1)=1.194+(1.271-1) / 6.457=1.236=0.92 \mathrm{~dB} ; \mathrm{F}(3,2)=1.153+(1.334-1) / 3.236=1.257=0.99 \mathrm{~dB}$; $\mathrm{F}(4,1)<\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{4 , 1}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
1.1	$0.268+\mathrm{j} \cdot(-0.287)$	0.392	0.507	0.460
3.0	$0.177+\mathrm{j} \cdot(-0.477)$	0.509	0.297	0.326

b) $\mu(1.1 \mathrm{GHz})>\mu(3.0 \mathrm{GHz})$ so the transistor has better stability at 1.1 GHz
c) we use S parameters for $\mathrm{f}=1.1 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=275.89=24.41 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.243$, U_minus $=-1.892 \mathrm{~dB}$, U_plus $=2.422 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 15

$1 . \mathrm{z}=0.795-\mathrm{j} \cdot 0.735 ; \mathrm{Y}=1 / 50 \Omega /(0.795-\mathrm{j} \cdot 0.735)=0.0136 \mathrm{~S}+\mathrm{j} \cdot(0.0125) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.795$ $-\mathrm{j} \cdot 0.735-1) /(0.795-\mathrm{j} \cdot 0.735+1)=0.046+\mathrm{j} \cdot(-0.391)=0.393 \angle-83.3^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=2.85 \mathrm{~mW}=4.55 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=4.55 \mathrm{dBm}+7.9 \mathrm{~dB}=12.45 \mathrm{dBm}=17.57 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=12.45 \mathrm{dBm}-5.15 \mathrm{~dB}=7.30 \mathrm{dBm}=5.37 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=17.57 \mathrm{~mW}-$
$5.37 \mathrm{~mW}=12.20 \mathrm{~mW}=10.87 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=10.87 \mathrm{dBm}+10.0 \mathrm{~dB}=20.87 \mathrm{dBm}=122.05 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.210+\mathrm{j} \cdot 0.145+1) /[1-(-0.210+\mathrm{j} \cdot 0.145)]=$ $31.47 \Omega+\mathrm{j} \cdot 9.76 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=15.74 \Omega+\mathrm{j} \cdot 4.88 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.513+\mathrm{j} \cdot 0.112=0.525 \angle 167.6^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.525, \arg (\Gamma)=167.6^{\circ}$
$\theta_{\mathrm{S} 1}=157.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.234 ; \theta_{\mathrm{P} 1}=129.0^{\circ}$ and $\theta_{\mathrm{S} 2}=35.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.234 ; \theta_{\mathrm{P} 2}=51.0^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>16.10 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.0+11.9=20.9 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.0+7.8=16.8 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.9+6.7=18.6 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.9+7.8=19.7 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.03 \mathrm{~dB}=1.268, \mathrm{~F}_{2}=1.24 \mathrm{~dB}=1.330, \mathrm{~F}_{3}=0.67 \mathrm{~dB}=1.167, \mathrm{~F}_{4}=0.71 \mathrm{~dB}=1.178, \mathrm{G}_{3}=6.7 \mathrm{~dB}=4.677, \mathrm{G}_{4}=$ $7.8 \mathrm{~dB}=6.026$;
$\mathrm{F}(4,1)=1.178+(1.268-1) / 6.026=1.222=0.87 \mathrm{~dB} ; \mathrm{F}(3,2)=1.167+(1.330-1) / 4.677=1.237=0.93 \mathrm{~dB} ;$ $\mathrm{F}(4,1)<\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{4 , 1}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
2.2	$0.275+\mathrm{j} \cdot(-0.485)$	0.558	0.862	0.763
3.2	$-0.064+\mathrm{j} \cdot(-0.575)$	0.578	0.966	0.925

b) $\mu(2.2 \mathrm{GHz})<\mu(3.2 \mathrm{GHz})$ so the transistor has better stability at 3.2 GHz
c) we use S parameters for $\mathrm{f}=3.2 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=34.28=15.35 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.152$, U_minus $=-1.231 \mathrm{~dB}, \mathrm{U} _$plus $=1.435 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 16

$1 . \mathrm{z}=0.810-\mathrm{j} \cdot 0.770 ; \mathrm{Y}=1 / 50 \Omega /(0.810-\mathrm{j} \cdot 0.770)=0.0130 \mathrm{~S}+\mathrm{j} \cdot(0.0123) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.810$ $-\mathrm{j} \cdot 0.770-1) /(0.810-\mathrm{j} \cdot 0.770+1)=0.064+\mathrm{j} \cdot(-0.398)=0.403 \angle-80.8^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=3.75 \mathrm{~mW}=5.74 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=5.74 \mathrm{dBm}+8.9 \mathrm{~dB}=14.64 \mathrm{dBm}=29.11 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=14.64 \mathrm{dBm}-6.55 \mathrm{~dB}=8.09 \mathrm{dBm}=6.44 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=29.11 \mathrm{~mW}$ -
$6.44 \mathrm{~mW}=22.67 \mathrm{~mW}=13.55 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=13.55 \mathrm{dBm}+9.6 \mathrm{~dB}=23.15 \mathrm{dBm}=206.73 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.099+\mathrm{j} \cdot 0.092+1) /[1-(0.099+\mathrm{j} \cdot 0.092)]=$ $59.84 \Omega+\mathrm{j} \cdot 11.22 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $Z / 2=29.92 \Omega+\mathrm{j} \cdot 5.61 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.245+\mathrm{j} \cdot 0.087=0.260 \angle 160.4^{\circ}$;
c) Complex calculus from $L 7 / 2021, S 165 \div 169,2$ solutions for the match, $|\Gamma|=0.260, \arg (\Gamma)=160.4^{\circ}$ $\theta_{\mathrm{S} 1}=152.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-0.539 ; \theta_{\mathrm{P} 1}=151.7^{\circ}$ and $\theta_{\mathrm{S} 2}=47.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.539 ; \theta_{\mathrm{P} 2}=28.3^{\circ}$, all lines with $\mathrm{Z}_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>14.30 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.0+10.7=18.7 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.0+7.7=15.7 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.7+5.0=15.7 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.7+7.7=18.4 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.00 \mathrm{~dB}=1.259, \mathrm{~F}_{2}=1.25 \mathrm{~dB}=1.334, \mathrm{~F}_{3}=0.52 \mathrm{~dB}=1.127, \mathrm{~F}_{4}=0.71 \mathrm{~dB}=1.178, \mathrm{G}_{3}=5.0 \mathrm{~dB}=3.162, \mathrm{G}_{4}=$ $7.7 \mathrm{~dB}=5.888$;
$\mathrm{F}(4,1)=1.178+(1.259-1) / 5.888=1.222=0.87 \mathrm{~dB} ; \mathrm{F}(3,2)=1.127+(1.334-1) / 3.162=1.233=0.91 \mathrm{~dB} ;$ $\mathrm{F}(4,1)<\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{4 , 1}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
0.2	$0.324+\mathrm{j} \cdot(0.084)$	0.335	0.188	0.151
3.0	$0.007+\mathrm{j} \cdot(-0.572)$	0.572	0.952	0.900

b) $\mu(0.2 \mathrm{GHz})<\mu(3.0 \mathrm{GHz})$ so the transistor has better stability at 3.0 GHz
c) we use S parameters for $\mathrm{f}=3.0 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=38.54=15.86 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.150, \mathrm{U} _$minus $=-1.212 \mathrm{~dB}$, U_plus $=1.409 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 17

1. $\mathrm{z}=1.105-\mathrm{j} \cdot 1.140 ; \mathrm{Y}=1 / 50 \Omega /(1.105-\mathrm{j} \cdot 1.140)=0.0088 \mathrm{~S}+\mathrm{j} \cdot(0.0090) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(1.105$ $-\mathrm{j} \cdot 1.140-1) /(1.105-\mathrm{j} \cdot 1.140+1)=0.265+\mathrm{j} \cdot(-0.398)=0.478 \angle-56.3^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.75 \mathrm{~mW}=2.43 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=2.43 \mathrm{dBm}+8.7 \mathrm{~dB}=11.13 \mathrm{dBm}=12.97 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=11.13 \mathrm{dBm}-4.30 \mathrm{~dB}=6.83 \mathrm{dBm}=4.82 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=12.97 \mathrm{~mW}-$
$4.82 \mathrm{~mW}=8.15 \mathrm{~mW}=9.11 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=9.11 \mathrm{dBm}+10.0 \mathrm{~dB}=19.11 \mathrm{dBm}=81.53 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.065+\mathrm{j} \cdot 0.107+1) /[1-(0.065+\mathrm{j} \cdot 0.107)]=$ $55.57 \Omega+\mathrm{j} \cdot 12.08 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=27.78 \Omega+\mathrm{j} \cdot 6.04 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.278+\mathrm{j} \cdot 0.099=0.295 \angle 160.3^{\circ}$;
c) Complex calculus from $\mathrm{L} 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.295, \arg (\Gamma)=160.3^{\circ}$
$\theta_{\mathrm{S} 1}=153.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-0.618 ; \theta_{\mathrm{P} 1}=148.3^{\circ}$ and $\theta_{\mathrm{S} 2}=46.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.618 ; \theta_{\mathrm{P} 2}=31.7^{\circ}$, all lines with $\mathrm{Z}_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>16.70 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.9+11.4=21.3 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.9+7.1=17.0 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.4+5.9=17.3 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.4+7.1=18.5 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.03 \mathrm{~dB}=1.268, \mathrm{~F}_{2}=1.29 \mathrm{~dB}=1.346, \mathrm{~F}_{3}=0.68 \mathrm{~dB}=1.169, \mathrm{~F}_{4}=0.83 \mathrm{~dB}=1.211, \mathrm{G}_{3}=5.9 \mathrm{~dB}=3.890, \mathrm{G}_{4}=$ $7.1 \mathrm{~dB}=5.129$;
$\mathrm{F}(4,1)=1.211+(1.268-1) / 5.129=1.263=1.01 \mathrm{~dB} ; \mathrm{F}(3,2)=1.169+(1.346-1) / 3.890=1.258=1.00 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
2.2	$0.093+\mathrm{j} \cdot(-0.339)$	0.351	0.800	0.755
3.1	$0.156+\mathrm{j} \cdot(-0.482)$	0.507	0.302	0.331

b) $\mu(2.2 \mathrm{GHz})>\mu(3.1 \mathrm{GHz})$ so the transistor has better stability at 2.2 GHz
c) we use S parameters for $\mathrm{f}=2.2 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=71.34=18.53 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.079$, U_minus $=-0.663 \mathrm{~dB}$, U_plus $=0.718 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 18

1. $\mathrm{z}=0.810-\mathrm{j} \cdot 1.140 ; \mathrm{Y}=1 / 50 \Omega /(0.810-\mathrm{j} \cdot 1.140)=0.0083 \mathrm{~S}+\mathrm{j} \cdot(0.0117) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.810$ $-\mathrm{j} \cdot 1.140-1) /(0.810-\mathrm{j} \cdot 1.140+1)=0.209+\mathrm{j} \cdot(-0.498)=0.540 \angle-67.3^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=3.45 \mathrm{~mW}=5.38 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=5.38 \mathrm{dBm}+9.0 \mathrm{~dB}=14.38 \mathrm{dBm}=27.40 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=14.38 \mathrm{dBm}-4.60 \mathrm{~dB}=9.78 \mathrm{dBm}=9.50 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=27.40 \mathrm{~mW}$ -
$9.50 \mathrm{~mW}=17.90 \mathrm{~mW}=12.53 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=12.53 \mathrm{dBm}+8.8 \mathrm{~dB}=21.33 \mathrm{dBm}=135.80 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.503+\mathrm{j} \cdot 0.257+1) /[1-(-0.503+\mathrm{j} \cdot 0.257)]=$ $14.64 \Omega+\mathrm{j} \cdot 11.05 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=7.32 \Omega+\mathrm{j} \cdot 5.53 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.728+\mathrm{j} \cdot 0.167=0.747 \angle 167.1^{\circ}$;
c) Complex calculus from L7/2021, S165 $\div 169$, 2 solutions for the match, $|\Gamma|=0.747, \arg (\Gamma)=167.1^{\circ}$ $\theta_{\mathrm{S} 1}=165.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-2.249 ; \theta_{\mathrm{P} 1}=114.0^{\circ}$ and $\theta_{\mathrm{S} 2}=27.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=2.249 ; \theta_{\mathrm{P} 2}=66.0^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>14.30 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.2+10.9=19.1 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.2+7.0=15.2 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.9+5.0=15.9 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.9+7.0=17.9 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.03 \mathrm{~dB}=1.268, \mathrm{~F}_{2}=1.14 \mathrm{~dB}=1.300, \mathrm{~F}_{3}=0.55 \mathrm{~dB}=1.135, \mathrm{~F}_{4}=0.79 \mathrm{~dB}=1.199, \mathrm{G}_{3}=5.0 \mathrm{~dB}=3.162, \mathrm{G}_{4}=$ $7.0 \mathrm{~dB}=5.012$;
$\mathrm{F}(4,1)=1.199+(1.268-1) / 5.012=1.253=0.98 \mathrm{~dB} ; \mathrm{F}(3,2)=1.135+(1.300-1) / 3.162=1.230=0.90 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
0.8	$0.495+\mathrm{j} \cdot(-0.064)$	0.499	0.488	0.626
1.0	$0.490+\mathrm{j} \cdot(-0.218)$	0.536	0.130	0.895

b) $\mu^{\prime}(0.8 \mathrm{GHz})<\mu^{\prime}(1.0 \mathrm{GHz})$ so the transistor has better stability at 1.0 GHz
c) we use S parameters for $\mathrm{f}=1.0 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=2196.07=33.42 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=2.578$, U_minus $=-11.073 \mathrm{~dB}, \mathrm{U} _$plus $=-3.963 \mathrm{~dB}$ (L8/2021, S142) (irrelevant plus gain deviation, $\mathrm{U}>1$)

Subject no. 19

$1 . \mathrm{z}=0.765+\mathrm{j} \cdot 1.005 ; \mathrm{Y}=1 / 50 \Omega /(0.765+\mathrm{j} \cdot 1.005)=0.0096 \mathrm{~S}+\mathrm{j} \cdot(-0.0126) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(0.765+\mathrm{j} \cdot 1.005-1) /(0.765+\mathrm{j} \cdot 1.005+1)=0.144+\mathrm{j} \cdot(0.487)=0.508 \angle 73.5^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=4.05 \mathrm{~mW}=6.07 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=6.07 \mathrm{dBm}+6.4 \mathrm{~dB}=12.47 \mathrm{dBm}=17.68 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=12.47 \mathrm{dBm}-6.80 \mathrm{~dB}=5.67 \mathrm{dBm}=3.69 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=17.68 \mathrm{~mW}$ -
$3.69 \mathrm{~mW}=13.99 \mathrm{~mW}=11.46 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=11.46 \mathrm{dBm}+9.4 \mathrm{~dB}=20.86 \mathrm{dBm}=121.81 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.281+\mathrm{j} \cdot 0.668+1) /[1-(-0.281+\mathrm{j} \cdot 0.668)]=$ $11.37 \Omega+\mathrm{j} \cdot 32.00 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $Z / 2=5.69 \Omega+j \cdot 16.00 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.659+\mathrm{j} \cdot 0.477=0.813 \angle 144.1^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.813, \arg (\Gamma)=144.1^{\circ}$
$\theta_{\mathrm{S} 1}=0.1^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-2.794 ; \theta_{\mathrm{P} 1}=109.7^{\circ}$ and $\theta_{\mathrm{S} 2}=35.7^{\circ} ; \operatorname{Im}\left(\mathrm{yS}_{\mathrm{S}}\right)=2.794 ; \theta_{\mathrm{P} 2}=70.3^{\circ}$, all lines with Z_{0} $=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>15.80 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.1+10.3=19.4 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.1+7.1=16.2 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.3+5.6=15.9 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.3+7.1=17.4 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.92 \mathrm{~dB}=1.236, \mathrm{~F}_{2}=1.27 \mathrm{~dB}=1.340, \mathrm{~F}_{3}=0.51 \mathrm{~dB}=1.125, \mathrm{~F}_{4}=0.70 \mathrm{~dB}=1.175, \mathrm{G}_{3}=5.6 \mathrm{~dB}=3.631, \mathrm{G}_{4}=$ $7.1 \mathrm{~dB}=5.129$;
$\mathrm{F}(4,1)=1.175+(1.236-1) / 5.129=1.221=0.87 \mathrm{~dB} ; \mathrm{F}(3,2)=1.125+(1.340-1) / 3.631=1.218=0.86 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
2.9	$-0.024+\mathrm{j} \cdot(-0.347)$	0.348	0.922	0.951
1.8	$0.388+\mathrm{j} \cdot(-0.355)$	0.526	0.207	0.843

b) $\mu^{\prime}(2.9 \mathrm{GHz})>\mu^{\prime}(1.8 \mathrm{GHz})$ so the transistor has better stability at 2.9 GHz
c) we use S parameters for $\mathrm{f}=2.9 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=42.21=16.25 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.049$, U_minus $=-0.418 \mathrm{~dB}$, U_plus $=0.439 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 20

$1 . \mathrm{z}=1.230-\mathrm{j} \cdot 0.950 ; \mathrm{Y}=1 / 50 \Omega /(1.230-\mathrm{j} \cdot 0.950)=0.0102 \mathrm{~S}+\mathrm{j} \cdot(0.0079) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(1.230$ $-\mathrm{j} \cdot 0.950-1) /(1.230-\mathrm{j} \cdot 0.950+1)=0.241+\mathrm{j} \cdot(-0.323)=0.403 \angle-53.3^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=3.75 \mathrm{~mW}=5.74 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=5.74 \mathrm{dBm}+8.6 \mathrm{~dB}=14.34 \mathrm{dBm}=27.17 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=14.34 \mathrm{dBm}-4.40 \mathrm{~dB}=9.94 \mathrm{dBm}=9.86 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=27.17 \mathrm{~mW}$ -
$9.86 \mathrm{~mW}=17.30 \mathrm{~mW}=12.38 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=12.38 \mathrm{dBm}+11.9 \mathrm{~dB}=24.28 \mathrm{dBm}=267.99 \underline{\mathbf{m W}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.193+\mathrm{j} \cdot 0.052+1) /[1-(0.193+\mathrm{j} \cdot 0.052)]=$ $73.40 \Omega+\mathrm{j} \cdot 7.95 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=36.70 \Omega+\mathrm{j} \cdot 3.98 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.151+\mathrm{j} \cdot 0.053=0.160 \angle 160.7^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.160, \arg (\Gamma)=160.7^{\circ}$
$\theta_{\mathrm{S} 1}=149.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-0.324 ; \theta_{\mathrm{P} 1}=162.0^{\circ}$ and $\theta_{\mathrm{S} 2}=50.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.324 ; \theta_{\mathrm{P} 2}=18.0^{\circ}$, all lines with $\mathrm{Z}_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>15.70 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.6+10.5=20.1 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.6+7.3=16.9 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.5+6.0=16.5 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.5+7.3=17.8 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.98 \mathrm{~dB}=1.253, \mathrm{~F}_{2}=1.18 \mathrm{~dB}=1.312, \mathrm{~F}_{3}=0.58 \mathrm{~dB}=1.143, \mathrm{~F}_{4}=0.75 \mathrm{~dB}=1.189, \mathrm{G}_{3}=6.0 \mathrm{~dB}=3.981, \mathrm{G}_{4}=$ $7.3 \mathrm{~dB}=5.370$;
$\mathrm{F}(4,1)=1.189+(1.253-1) / 5.370=1.236=0.92 \mathrm{~dB} ; \mathrm{F}(3,2)=1.143+(1.312-1) / 3.981=1.221=0.87 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
1.1	$0.493+\mathrm{j} \cdot(-0.174)$	0.523	0.609	0.699
1.1	$0.478+\mathrm{j} \cdot(-0.239)$	0.535	0.153	0.891

b) $\mu^{\prime}(1.1 \mathrm{GHz})<\mu^{\prime}(1.1 \mathrm{GHz})$ so the transistor has better stability at 1.1 GHz
c) we use S parameters for $\mathrm{f}=1.1 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1668.44=32.22 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=2.099$, U_minus $=-9.825 \mathrm{~dB}, \mathrm{U} _$plus $=-0.821 \mathrm{~dB}$ (L8/2021, S142) (irrelevant plus gain deviation, $\mathrm{U}>1$)

Subject no. 21

$1 . \mathrm{z}=0.960-\mathrm{j} \cdot 0.850 ; \mathrm{Y}=1 / 50 \Omega /(0.960-\mathrm{j} \cdot 0.850)=0.0117 \mathrm{~S}+\mathrm{j} \cdot(0.0103) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.960$ $-\mathrm{j} \cdot 0.850-1) /(0.960-\mathrm{j} \cdot 0.850+1)=0.141+\mathrm{j} \cdot(-0.372)=0.398 \angle-69.2^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.10 \mathrm{~mW}=0.41 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=0.41 \mathrm{dBm}+7.7 \mathrm{~dB}=8.11 \mathrm{dBm}=6.48 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}=$ $8.11 \mathrm{dBm}-4.50 \mathrm{~dB}=3.61 \mathrm{dBm}=2.30 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=6.48 \mathrm{~mW}-2.30 \mathrm{~mW}=$ $4.18 \mathrm{~mW}=6.21 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=6.21 \mathrm{dBm}+8.3 \mathrm{~dB}=14.51 \mathrm{dBm}=28.25 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.367+\mathrm{j} \cdot 0.183+1) /[1-(0.367+\mathrm{j} \cdot 0.183)]=$ $95.79 \Omega+\mathrm{j} \cdot 42.15 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=47.90 \Omega+\mathrm{j} \cdot 21.07 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=0.024+\mathrm{j} \cdot 0.210=0.211 \angle 83.6^{\circ}$;
c) Complex calculus from L7/2021, S165 $\div 169,2$ solutions for the match, $|\Gamma|=0.211, \arg (\Gamma)=83.6^{\circ}$
$\theta_{\mathrm{S} 1}=9.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-0.433 ; \theta_{\mathrm{P} 1}=156.6^{\circ}$ and $\theta_{\mathrm{S} 2}=87.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.433 ; \theta_{\mathrm{P} 2}=23.4^{\circ}$, all lines with Z_{0} $=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>15.50 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.8+10.6=19.4 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.8+7.3=16.1 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.6+6.5=17.1 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.6+7.3=17.9 \mathrm{~dB}$ b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.92 \mathrm{~dB}=1.236, \mathrm{~F}_{2}=1.17 \mathrm{~dB}=1.309, \mathrm{~F}_{3}=0.53 \mathrm{~dB}=1.130, \mathrm{~F}_{4}=0.75 \mathrm{~dB}=1.189, \mathrm{G}_{3}=6.5 \mathrm{~dB}=4.467, \mathrm{G}_{4}=$ $7.3 \mathrm{~dB}=5.370$;
$\mathrm{F}(4,1)=1.189+(1.236-1) / 5.370=1.232=0.91 \mathrm{~dB} ; \mathrm{F}(3,2)=1.130+(1.309-1) / 4.467=1.199=0.79 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
1.3	$0.232+\mathrm{j} \cdot(-0.294)$	0.374	0.576	0.712
1.7	$0.403+\mathrm{j} \cdot(-0.340)$	0.528	0.197	0.847

b) $\mu^{\prime}(1.3 \mathrm{GHz})<\mu^{\prime}(1.7 \mathrm{GHz})$ so the transistor has better stability at 1.7 GHz
c) we use S parameters for $\mathrm{f}=1.7 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=856.64=29.33 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.640, \mathrm{U} _$minus $=-8.432 \mathrm{~dB}$, U_plus $=3.876 \mathrm{~dB}$ (L8/2021, S142) (irrelevant plus gain deviation, $\mathrm{U}>1$)

Subject no. 22

$1 . \mathrm{z}=1.205-\mathrm{j} \cdot 1.270 ; \mathrm{Y}=1 / 50 \Omega /(1.205-\mathrm{j} \cdot 1.270)=0.0079 \mathrm{~S}+\mathrm{j} \cdot(0.0083) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(1.205$ $-\mathrm{j} \cdot 1.270-1) /(1.205-\mathrm{j} \cdot 1.270+1)=0.319+\mathrm{j} \cdot(-0.392)=0.506 \angle-50.9^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=3.30 \mathrm{~mW}=5.19 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=5.19 \mathrm{dBm}+8.8 \mathrm{~dB}=13.99 \mathrm{dBm}=25.03 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=13.99 \mathrm{dBm}-5.00 \mathrm{~dB}=8.99 \mathrm{dBm}=7.92 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=25.03 \mathrm{~mW}$ -
$7.92 \mathrm{~mW}=17.12 \mathrm{~mW}=12.33 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=12.33 \mathrm{dBm}+9.0 \mathrm{~dB}=21.33 \mathrm{dBm}=135.96 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.606+\mathrm{j} \cdot 0.132+1) /[1-(-0.606+\mathrm{j} \cdot 0.132)]=$ $11.85 \Omega+\mathrm{j} \cdot 5.08 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=5.92 \Omega+\mathrm{j} \cdot 2.54 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.784+\mathrm{j} \cdot 0.081=0.789 \angle 174.1^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.789, \arg (\Gamma)=174.1^{\circ}$ $\theta_{\mathrm{S} 1}=164.0^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-2.565 ; \theta_{\mathrm{P} 1}=111.3^{\circ}$ and $\theta_{\mathrm{S} 2}=21.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=2.565 ; \theta_{\mathrm{P} 2}=68.7^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>16.40 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.4+11.4=20.8 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.4+8.8=18.2 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.4+5.1=16.5 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.4+8.8=20.2 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.93 \mathrm{~dB}=1.239, \mathrm{~F}_{2}=1.24 \mathrm{~dB}=1.330, \mathrm{~F}_{3}=0.58 \mathrm{~dB}=1.143, \mathrm{~F}_{4}=0.85 \mathrm{~dB}=1.216, \mathrm{G}_{3}=5.1 \mathrm{~dB}=3.236, \mathrm{G}_{4}=$ $8.8 \mathrm{~dB}=7.586$;
$\mathrm{F}(4,1)=1.216+(1.239-1) / 7.586=1.248=0.96 \mathrm{~dB} ; \mathrm{F}(3,2)=1.143+(1.330-1) / 3.236=1.245=0.95 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
1.0	$0.501+\mathrm{j} \cdot(-0.139)$	0.520	0.571	0.454
3.3	$-0.099+\mathrm{j} \cdot(-0.571)$	0.580	0.973	0.940

b) $\mu(1.0 \mathrm{GHz})<\mu(3.3 \mathrm{GHz})$ so the transistor has better stability at 3.3 GHz
c) we use S parameters for $\mathrm{f}=3.3 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=32.49=15.12 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot|\cdot| \mathrm{S}_{22} \mid /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.153$, U_minus $=-1.239 \mathrm{~dB}, \mathrm{U} _$plus $=1.445 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 23

$1 . \mathrm{z}=1.195+\mathrm{j} \cdot 0.920 ; \mathrm{Y}=1 / 50 \Omega /(1.195+\mathrm{j} \cdot 0.920)=0.0105 \mathrm{~S}+\mathrm{j} \cdot(-0.0081) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(1.195+\mathrm{j} \cdot 0.920-1) /(1.195+\mathrm{j} \cdot 0.920+1)=0.225+\mathrm{j} \cdot(0.325)=0.395 \angle 55.3^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=3.15 \mathrm{~mW}=4.98 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=4.98 \mathrm{dBm}+7.0 \mathrm{~dB}=11.98 \mathrm{dBm}=15.79 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=11.98 \mathrm{dBm}-4.55 \mathrm{~dB}=7.43 \mathrm{dBm}=5.54 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=15.79 \mathrm{~mW}-$
$5.54 \mathrm{~mW}=10.25 \mathrm{~mW}=10.11 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=10.11 \mathrm{dBm}+11.0 \mathrm{~dB}=21.11 \mathrm{dBm}=129.04 \underline{\mathbf{m W}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.334+\mathrm{j} \cdot 0.212+1) /[1-(0.334+\mathrm{j} \cdot 0.212)]=$ $86.34 \Omega+\mathrm{j} \cdot 43.40 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $Z / 2=43.17 \Omega+j \cdot 21.70 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.018+\mathrm{j} \cdot 0.237=0.238 \angle 94.4^{\circ}$;
c) Complex calculus from $L 7 / 2021, S 165 \div 169,2$ solutions for the match, $|\Gamma|=0.238, \arg (\Gamma)=94.4^{\circ}$
$\theta_{\mathrm{S} 1}=4.7^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-0.490 ; \theta_{\mathrm{P} 1}=153.9^{\circ}$ and $\theta_{\mathrm{S} 2}=80.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=0.490 ; \theta_{\mathrm{P} 2}=26.1^{\circ}$, all lines with Z_{0} $=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>14.65 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.9+11.7=20.6 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.9+8.3=17.2 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.7+5.5=17.2 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.7+8.3=20.0 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.05 \mathrm{~dB}=1.274, \mathrm{~F}_{2}=1.15 \mathrm{~dB}=1.303, \mathrm{~F}_{3}=0.52 \mathrm{~dB}=1.127, \mathrm{~F}_{4}=0.85 \mathrm{~dB}=1.216, \mathrm{G}_{3}=5.5 \mathrm{~dB}=3.548, \mathrm{G}_{4}=$ $8.3 \mathrm{~dB}=6.761$;
$\mathrm{F}(4,1)=1.216+(1.274-1) / 6.761=1.257=0.99 \mathrm{~dB} ; \mathrm{F}(3,2)=1.127+(1.303-1) / 3.548=1.213=0.84 \mathrm{~dB}$; $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
2.1	$0.305+\mathrm{j} \cdot(-0.466)$	0.557	0.848	0.872
3.6	$0.064+\mathrm{j} \cdot(-0.493)$	0.497	0.350	0.785

b) $\mu^{\prime}(2.1 \mathrm{GHz})>\mu^{\prime}(3.6 \mathrm{GHz})$ so the transistor has better stability at 2.1 GHz
c) we use S parameters for $\mathrm{f}=2.1 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=74.31=18.71 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.165$, U_minus $=-1.325 \mathrm{~dB}$, U_plus $=1.563 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 24

1. $\mathrm{z}=1.100+\mathrm{j} \cdot 1.285 ; \mathrm{Y}=1 / 50 \Omega /(1.100+\mathrm{j} \cdot 1.285)=0.0077 \mathrm{~S}+\mathrm{j} \cdot(-0.0090) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(1.100+\mathrm{j} \cdot 1.285-1) /(1.100+\mathrm{j} \cdot 1.285+1)=0.307+\mathrm{j} \cdot(0.424)=0.524 \angle 54.1^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=3.65 \mathrm{~mW}=5.62 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=5.62 \mathrm{dBm}+9.0 \mathrm{~dB}=14.62 \mathrm{dBm}=28.99 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=14.62 \mathrm{dBm}-4.70 \mathrm{~dB}=9.92 \mathrm{dBm}=9.82 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=28.99 \mathrm{~mW}$ -
$9.82 \mathrm{~mW}=19.17 \mathrm{~mW}=12.83 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=12.83 \mathrm{dBm}+9.1 \mathrm{~dB}=21.93 \mathrm{dBm}=155.81 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.415+\mathrm{j} \cdot 0.337+1) /[1-(-0.415+\mathrm{j} \cdot 0.337)]=$ $16.88 \Omega+\mathrm{j} \cdot 15.93 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=8.44 \Omega+\mathrm{j} \cdot 7.96 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.680+\mathrm{j} \cdot 0.229=0.717 \angle 161.4^{\circ}$;
c) Complex calculus from $L 7 / 2021, S 165 \div 169,2$ solutions for the match, $|\Gamma|=0.717, \arg (\Gamma)=161.4^{\circ}$ $\theta_{\mathrm{S} 1}=167.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-2.060 ; \theta_{\mathrm{P} 1}=115.9^{\circ}$ and $\theta_{\mathrm{S} 2}=31.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=2.060 ; \theta_{\mathrm{P} 2}=64.1^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>16.25 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.2+11.7=20.9 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.2+7.2=16.4 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.7+6.2=17.9 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.7+7.2=18.9 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.91 \mathrm{~dB}=1.233, \mathrm{~F}_{2}=1.19 \mathrm{~dB}=1.315, \mathrm{~F}_{3}=0.57 \mathrm{~dB}=1.140, \mathrm{~F}_{4}=0.84 \mathrm{~dB}=1.213, \mathrm{G}_{3}=6.2 \mathrm{~dB}=4.169, \mathrm{G}_{4}=$ $7.2 \mathrm{~dB}=5.248$;
$\mathrm{F}(4,1)=1.213+(1.233-1) / 5.248=1.258=1.00 \mathrm{~dB} ; \mathrm{F}(3,2)=1.140+(1.315-1) / 4.169=1.216=0.85 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
3.0	$-0.041+\mathrm{j} \cdot(-0.349)$	0.352	0.933	0.958
2.3	$0.306+\mathrm{j} \cdot(-0.420)$	0.519	0.245	0.818

b) $\mu^{\prime}(3.0 \mathrm{GHz})>\mu^{\prime}(2.3 \mathrm{GHz})$ so the transistor has better stability at 3.0 GHz
c) we use S parameters for $\mathrm{f}=3.0 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=39.53=15.97 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.047$, U_minus $=-0.398 \mathrm{~dB}$, U_plus $=0.417 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 25

$1 . \mathrm{z}=1.035+\mathrm{j} \cdot 0.820 ; \mathrm{Y}=1 / 50 \Omega /(1.035+\mathrm{j} \cdot 0.820)=0.0119 \mathrm{~S}+\mathrm{j} \cdot(-0.0094) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(1.035+\mathrm{j} \cdot 0.820-1) /(1.035+\mathrm{j} \cdot 0.820+1)=0.154+\mathrm{j} \cdot(0.341)=0.374 \angle 65.6^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.20 \mathrm{~mW}=0.79 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=0.79 \mathrm{dBm}+8.4 \mathrm{~dB}=9.19 \mathrm{dBm}=8.30 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}=$ $9.19 \mathrm{dBm}-6.40 \mathrm{~dB}=2.79 \mathrm{dBm}=1.90 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=8.30 \mathrm{~mW}-1.90 \mathrm{~mW}=$ $6.40 \mathrm{~mW}=8.06 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=8.06 \mathrm{dBm}+10.6 \mathrm{~dB}=18.66 \mathrm{dBm}=73.48 \underline{\mathbf{m W}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.658+\mathrm{j} \cdot 0.359+1) /[1-(0.658+\mathrm{j} \cdot 0.359)]=$ $89.11 \Omega+\mathrm{j} \cdot 146.03 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $Z / 2=44.56 \Omega+j \cdot 73.01 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=0.337+\mathrm{j} \cdot 0.512=0.613 \angle 56.6^{\circ}$;
c) Complex calculus from $\mathrm{L} 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.613, \arg (\Gamma)=56.6^{\circ}$
$\theta_{\mathrm{S} 1}=35.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.551 ; \theta_{\mathrm{P} 1}=122.8^{\circ}$ and $\theta_{\mathrm{S} 2}=87.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.551 ; \theta_{\mathrm{P} 2}=57.2^{\circ}$, all lines with Z_{0} $=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>14.40 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.3+10.2=18.5 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.3+7.3=15.6 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.2+5.9=16.1 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.2+7.3=17.5 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.99 \mathrm{~dB}=1.256, \mathrm{~F}_{2}=1.23 \mathrm{~dB}=1.327, \mathrm{~F}_{3}=0.60 \mathrm{~dB}=1.148, \mathrm{~F}_{4}=0.81 \mathrm{~dB}=1.205, \mathrm{G}_{3}=5.9 \mathrm{~dB}=3.890, \mathrm{G}_{4}=$ $7.3 \mathrm{~dB}=5.370$;
$\mathrm{F}(4,1)=1.205+(1.256-1) / 5.370=1.253=0.98 \mathrm{~dB} ; \mathrm{F}(3,2)=1.148+(1.327-1) / 3.890=1.232=0.91 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
1.5	$0.444+\mathrm{j} \cdot(-0.307)$	0.540	0.727	0.781
4.6	$-0.112+\mathrm{j} \cdot(-0.459)$	0.472	0.461	0.791

b) $\mu^{\prime}(1.5 \mathrm{GHz})<\mu^{\prime}(4.6 \mathrm{GHz})$ so the transistor has better stability at 4.6 GHz
c) we use S parameters for $\mathrm{f}=4.6 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\mathrm{TU} \text { max }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=141.31=21.50 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.555$, U_minus $=-3.833 \mathrm{~dB}$, U_plus $=7.028 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 26

$1 . \mathrm{z}=0.720+\mathrm{j} \cdot 1.235 ; \mathrm{Y}=1 / 50 \Omega /(0.720+\mathrm{j} \cdot 1.235)=0.0070 \mathrm{~S}+\mathrm{j} \cdot(-0.0121) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(0.720+\mathrm{j} \cdot 1.235-1) /(0.720+\mathrm{j} \cdot 1.235+1)=0.233+\mathrm{j} \cdot(0.551)=0.598 \angle 67.1^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.75 \mathrm{~mW}=2.43 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=2.43 \mathrm{dBm}+7.0 \mathrm{~dB}=9.43 \mathrm{dBm}=8.77 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}=$ $9.43 \mathrm{dBm}-5.95 \mathrm{~dB}=3.48 \mathrm{dBm}=2.23 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=8.77 \mathrm{~mW}-2.23 \mathrm{~mW}=$ $6.54 \mathrm{~mW}=8.16 \mathrm{dBm}$; Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=8.16 \mathrm{dBm}+9.7 \mathrm{~dB}=17.86 \mathrm{dBm}=61.05 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.351+\mathrm{j} \cdot 0.499+1) /[1-(0.351+\mathrm{j} \cdot 0.499)]=$ $46.84 \Omega+j \cdot 74.46 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $Z / 2=23.42 \Omega+j \cdot 37.23 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.083+\mathrm{j} \cdot 0.549=0.556 \angle 98.6^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.556, \arg (\Gamma)=98.6^{\circ}$
$\theta_{\mathrm{S} 1}=12.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.337 ; \theta_{\mathrm{P} 1}=126.8^{\circ}$ and $\theta_{\mathrm{S} 2}=68.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.337 ; \theta_{\mathrm{P} 2}=53.2^{\circ}$, all lines with Z_{0} $=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>14.80 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.5+10.7=19.2 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.5+8.2=16.7 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.7+5.8=16.5 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.7+8.2=18.9 \mathrm{~dB}$ b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.90 \mathrm{~dB}=1.230, \mathrm{~F}_{2}=1.20 \mathrm{~dB}=1.318, \mathrm{~F}_{3}=0.60 \mathrm{~dB}=1.148, \mathrm{~F}_{4}=0.84 \mathrm{~dB}=1.213, \mathrm{G}_{3}=5.8 \mathrm{~dB}=3.802, \mathrm{G}_{4}=$ $8.2 \mathrm{~dB}=6.607$;
$\mathrm{F}(4,1)=1.213+(1.230-1) / 6.607=1.248=0.96 \mathrm{~dB} ; \mathrm{F}(3,2)=1.148+(1.318-1) / 3.802=1.232=0.91 \mathrm{~dB} ;$ $F(4,1)>F(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
1.9	$0.357+\mathrm{j} \cdot(-0.418)$	0.550	0.811	0.698
2.7	$0.233+\mathrm{j} \cdot(-0.458)$	0.513	0.279	0.306

b) $\mu(1.9 \mathrm{GHz})>\mu(2.7 \mathrm{GHz})$ so the transistor has better stability at 1.9 GHz
c) we use S parameters for $\mathrm{f}=1.9 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=90.26=19.56 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.175$, U_minus $=-1.398 \mathrm{~dB}$, U_plus $=1.666 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 27

$1 . \mathrm{z}=1.220-\mathrm{j} \cdot 0.980 ; \mathrm{Y}=1 / 50 \Omega /(1.220-\mathrm{j} \cdot 0.980)=0.0100 \mathrm{~S}+\mathrm{j} \cdot(0.0080) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(1.220$ $-\mathrm{j} \cdot 0.980-1) /(1.220-\mathrm{j} \cdot 0.980+1)=0.246+\mathrm{j} \cdot(-0.333)=0.414 \angle-53.5^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=3.90 \mathrm{~mW}=5.91 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=5.91 \mathrm{dBm}+7.1 \mathrm{~dB}=13.01 \mathrm{dBm}=20.00 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=13.01 \mathrm{dBm}-5.75 \mathrm{~dB}=7.26 \mathrm{dBm}=5.32 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=20.00 \mathrm{~mW}$ -
$5.32 \mathrm{~mW}=14.68 \mathrm{~mW}=11.67 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=11.67 \mathrm{dBm}+10.7 \mathrm{~dB}=22.37 \mathrm{dBm}=172.47 \underline{\mathbf{m W}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.498+\mathrm{j} \cdot 0.110+1) /[1-(0.498+\mathrm{j} \cdot 0.110)]=$ $140.08 \Omega+\mathrm{j} \cdot 41.65 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $Z / 2=70.04 \Omega+\mathrm{j} \cdot 20.83 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=0.191+\mathrm{j} \cdot 0.140=0.237 \angle 36.3^{\circ}$;
c) Complex calculus from L7/2021, S165 $\div 169,2$ solutions for the match, $|\Gamma|=0.237$, $\arg (\Gamma)=36.3^{\circ}$
$\theta_{\mathrm{S} 1}=33.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-0.488 ; \theta_{\mathrm{P} 1}=154.0^{\circ}$ and $\theta_{\mathrm{S} 2}=110.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.488 ; \theta_{\mathrm{P} 2}=26.0^{\circ}$, all lines with $\mathrm{Z}_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>14.95 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.3+11.9=20.2 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.3+7.3=15.6 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.9+6.1=18.0 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.9+7.3=19.2 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.99 \mathrm{~dB}=1.256, \mathrm{~F}_{2}=1.10 \mathrm{~dB}=1.288, \mathrm{~F}_{3}=0.65 \mathrm{~dB}=1.161, \mathrm{~F}_{4}=0.74 \mathrm{~dB}=1.186, \mathrm{G}_{3}=6.1 \mathrm{~dB}=4.074, \mathrm{G}_{4}=$ $7.3 \mathrm{~dB}=5.370$;
$\mathrm{F}(4,1)=1.186+(1.256-1) / 5.370=1.233=0.91 \mathrm{~dB} ; \mathrm{F}(3,2)=1.161+(1.288-1) / 4.074=1.232=0.91 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
0.7	$0.482+\mathrm{j} \cdot(-0.024)$	0.483	0.443	0.604
4.5	$-0.093+\mathrm{j} \cdot(-0.467)$	0.476	0.442	0.785

b) $\mu^{\prime}(0.7 \mathrm{GHz})<\mu^{\prime}(4.5 \mathrm{GHz})$ so the transistor has better stability at 4.5 GHz
c) we use S parameters for $\mathrm{f}=4.5 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=149.13=21.74 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.589$, U_minus $=-4.021 \mathrm{~dB}, \mathrm{U} _$plus $=7.716 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 28

1. $\mathrm{z}=1.095+\mathrm{j} \cdot 1.065 ; \mathrm{Y}=1 / 50 \Omega /(1.095+\mathrm{j} \cdot 1.065)=0.0094 \mathrm{~S}+\mathrm{j} \cdot(-0.0091) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(1.095+\mathrm{j} \cdot 1.065-1) /(1.095+\mathrm{j} \cdot 1.065+1)=0.241+\mathrm{j} \cdot(0.386)=0.455 \angle 58.0^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=2.65 \mathrm{~mW}=4.23 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=4.23 \mathrm{dBm}+8.1 \mathrm{~dB}=12.33 \mathrm{dBm}=17.11 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=12.33 \mathrm{dBm}-4.45 \mathrm{~dB}=7.88 \mathrm{dBm}=6.14 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=17.11 \mathrm{~mW}$ -
$6.14 \mathrm{~mW}=10.97 \mathrm{~mW}=10.40 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=10.40 \mathrm{dBm}+11.1 \mathrm{~dB}=21.50 \mathrm{dBm}=141.30 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.018+\mathrm{j} \cdot 0.720+1) /[1-(-0.018+\mathrm{j} \cdot 0.720)]=$ $15.48 \Omega+\mathrm{j} \cdot 46.31 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=7.74 \Omega+\mathrm{j} \cdot 23.16 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.492+\mathrm{j} \cdot 0.598=0.775 \angle 129.4^{\circ}$;
c) Complex calculus from $\mathrm{L} 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.775, \arg (\Gamma)=129.4^{\circ}$
$\theta_{\mathrm{S} 1}=5.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-2.450 ; \theta_{\mathrm{P} 1}=112.2^{\circ}$ and $\theta_{\mathrm{S} 2}=44.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=2.450 ; \theta_{\mathrm{P} 2}=67.8^{\circ}$, all lines with Z_{0} $=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>15.30 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.6+10.0=18.6 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.6+7.0=15.6 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.0+6.5=16.5 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.0+7.0=17.0 \mathrm{~dB}$ b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.93 \mathrm{~dB}=1.239, \mathrm{~F}_{2}=1.16 \mathrm{~dB}=1.306, \mathrm{~F}_{3}=0.67 \mathrm{~dB}=1.167, \mathrm{~F}_{4}=0.78 \mathrm{~dB}=1.197, \mathrm{G}_{3}=6.5 \mathrm{~dB}=4.467, \mathrm{G}_{4}=$ $7.0 \mathrm{~dB}=5.012$;
$\mathrm{F}(4,1)=1.197+(1.239-1) / 5.012=1.244=0.95 \mathrm{~dB} ; \mathrm{F}(3,2)=1.167+(1.306-1) / 4.467=1.235=0.92 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
2.0	$0.334+\mathrm{j} \cdot(-0.446)$	0.557	0.828	0.856
0.9	$0.498+\mathrm{j} \cdot(-0.203)$	0.538	0.121	0.909

b) $\mu^{\prime}(2.0 \mathrm{GHz})<\mu^{\prime}(0.9 \mathrm{GHz})$ so the transistor has better stability at 0.9 GHz
c) we use S parameters for $\mathrm{f}=0.9 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=2614.62=34.17 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=2.639$, U_minus $=-11.220 \mathrm{~dB}$, U_plus $=-4.292 \mathrm{~dB}$ (L8/2021, S142) (irrelevant plus gain deviation, $\mathrm{U}>1$)

Subject no. 29

$1 . \mathrm{z}=1.010-\mathrm{j} \cdot 1.015 ; \mathrm{Y}=1 / 50 \Omega /(1.010-\mathrm{j} \cdot 1.015)=0.0099 \mathrm{~S}+\mathrm{j} \cdot(0.0099) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(1.010$ $-\mathrm{j} \cdot 1.015-1) /(1.010-\mathrm{j} \cdot 1.015+1)=0.207+\mathrm{j} \cdot(-0.400)=0.451 \angle-62.6^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=2.65 \mathrm{~mW}=4.23 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=4.23 \mathrm{dBm}+9.9 \mathrm{~dB}=14.13 \mathrm{dBm}=25.90 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=14.13 \mathrm{dBm}-5.70 \mathrm{~dB}=8.43 \mathrm{dBm}=6.97 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=25.90 \mathrm{~mW}$ -
$6.97 \mathrm{~mW}=18.93 \mathrm{~mW}=12.77 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=12.77 \mathrm{dBm}+8.8 \mathrm{~dB}=21.57 \mathrm{dBm}=143.57 \underline{\mathbf{m W}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.485+\mathrm{j} \cdot 0.279+1) /[1-(0.485+\mathrm{j} \cdot 0.279)]=$ $100.12 \Omega+\mathrm{j} \cdot 81.33 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=50.06 \Omega+\mathrm{j} \cdot 40.66 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=0.142+\mathrm{j} \cdot 0.349=0.376 \angle 67.8^{\circ}$;
c) Complex calculus from $L 7 / 2021, S 165 \div 169,2$ solutions for the match, $|\Gamma|=0.376, \arg (\Gamma)=67.8^{\circ}$
$\theta_{\mathrm{S} 1}=22.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-0.813 ; \theta_{\mathrm{P} 1}=140.9^{\circ}$ and $\theta_{\mathrm{S} 2}=90.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.813 ; \theta_{\mathrm{P} 2}=39.1^{\circ}$, all lines with Z_{0} $=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>16.10 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.3+11.0=20.3 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.3+8.6=17.9 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.0+5.3=16.3 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.0+8.6=19.6 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.08 \mathrm{~dB}=1.282, \mathrm{~F}_{2}=1.28 \mathrm{~dB}=1.343, \mathrm{~F}_{3}=0.64 \mathrm{~dB}=1.159, \mathrm{~F}_{4}=0.76 \mathrm{~dB}=1.191, \mathrm{G}_{3}=5.3 \mathrm{~dB}=3.388, \mathrm{G}_{4}=$ $8.6 \mathrm{~dB}=7.244$;
$\mathrm{F}(4,1)=1.191+(1.282-1) / 7.244=1.230=0.90 \mathrm{~dB} ; \mathrm{F}(3,2)=1.159+(1.343-1) / 3.388=1.260=1.00 \mathrm{~dB} ;$ $\mathrm{F}(4,1)<\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{4 , 1}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
2.3	$0.245+\mathrm{j} \cdot(-0.506)$	0.563	0.874	0.893
1.2	$0.466+\mathrm{j} \cdot(-0.259)$	0.533	0.162	0.886

b) $\mu^{\prime}(2.3 \mathrm{GHz})>\mu^{\prime}(1.2 \mathrm{GHz})$ so the transistor has better stability at 2.3 GHz
c) we use S parameters for $\mathrm{f}=2.3 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=62.71=17.97 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.159$, U_minus $=-1.285 \mathrm{~dB}$, U_plus $=1.508 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 30

1. $\mathrm{z}=1.260+\mathrm{j} \cdot 1.295 ; \mathrm{Y}=1 / 50 \Omega /(1.260+\mathrm{j} \cdot 1.295)=0.0077 \mathrm{~S}+\mathrm{j} \cdot(-0.0079) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(1.260+\mathrm{j} \cdot 1.295-1) /(1.260+\mathrm{j} \cdot 1.295+1)=0.334+\mathrm{j} \cdot(0.382)=0.507 \angle 48.8^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=2.85 \mathrm{~mW}=4.55 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=4.55 \mathrm{dBm}+8.0 \mathrm{~dB}=12.55 \mathrm{dBm}=17.98 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=12.55 \mathrm{dBm}-6.15 \mathrm{~dB}=6.40 \mathrm{dBm}=4.36 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=17.98 \mathrm{~mW}$ -
$4.36 \mathrm{~mW}=13.62 \mathrm{~mW}=11.34 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=11.34 \mathrm{dBm}+11.7 \mathrm{~dB}=23.04 \mathrm{dBm}=201.44 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.072+\mathrm{j} \cdot 0.459+1) /[1-(-0.072+\mathrm{j} \cdot 0.459)]=$ $28.83 \Omega+\mathrm{j} \cdot 33.75 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=14.42 \Omega+\mathrm{j} \cdot 16.88 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.453+\mathrm{j} \cdot 0.381=0.591 \angle 139.9^{\circ}$;
c) Complex calculus from $\mathrm{L} 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.591, \arg (\Gamma)=139.9^{\circ}$ $\theta_{\mathrm{S} 1}=173.2^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-1.467 ; \theta_{\mathrm{P} 1}=124.3^{\circ}$ and $\theta_{\mathrm{S} 2}=46.9^{\circ} ; \operatorname{Im}\left(\mathrm{yS}_{\mathrm{S}}\right)=1.467 ; \theta_{\mathrm{P} 2}=55.7^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations $(\mathrm{G}>16.35 \mathrm{~dB})$: $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.9+11.1=21.0 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.9+7.6=17.5 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.1+6.4=17.5 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.1+7.6=18.7 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.94 \mathrm{~dB}=1.242, \mathrm{~F}_{2}=1.27 \mathrm{~dB}=1.340, \mathrm{~F}_{3}=0.67 \mathrm{~dB}=1.167, \mathrm{~F}_{4}=0.79 \mathrm{~dB}=1.199, \mathrm{G}_{3}=6.4 \mathrm{~dB}=4.365, \mathrm{G}_{4}=$ $7.6 \mathrm{~dB}=5.754$;
$\mathrm{F}(4,1)=1.199+(1.242-1) / 5.754=1.241=0.94 \mathrm{~dB} ; \mathrm{F}(3,2)=1.167+(1.340-1) / 4.365=1.245=0.95 \mathrm{~dB} ;$ $\mathrm{F}(4,1)<\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{4 , 1}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
1.5	$0.200+\mathrm{j} \cdot(-0.302)$	0.362	0.635	0.586
5.0	$-0.166+\mathrm{j} \cdot(-0.425)$	0.457	0.515	0.550

b) $\mu(1.5 \mathrm{GHz})>\mu(5.0 \mathrm{GHz})$ so the transistor has better stability at 1.5 GHz
c) we use S parameters for $\mathrm{f}=1.5 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=149.06=21.73 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.144, \mathrm{U} _$minus $=-1.171 \mathrm{~dB}, \mathrm{U} _$plus $=1.354 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 31

$1 . \mathrm{z}=1.120-\mathrm{j} \cdot 1.025 ; \mathrm{Y}=1 / 50 \Omega /(1.120-\mathrm{j} \cdot 1.025)=0.0097 \mathrm{~S}+\mathrm{j} \cdot(0.0089) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(1.120$ $-\mathrm{j} \cdot 1.025-1) /(1.120-\mathrm{j} \cdot 1.025+1)=0.235+\mathrm{j} \cdot(-0.370)=0.438 \angle-57.5^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=4.05 \mathrm{~mW}=6.07 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=6.07 \mathrm{dBm}+9.5 \mathrm{~dB}=15.57 \mathrm{dBm}=36.10 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=15.57 \mathrm{dBm}-5.35 \mathrm{~dB}=10.22 \mathrm{dBm}=10.53 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=36.10 \mathrm{~mW}-$
$10.53 \mathrm{~mW}=25.57 \mathrm{~mW}=14.08 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=14.08 \mathrm{dBm}+10.3 \mathrm{~dB}=24.38 \mathrm{dBm}=273.93 \underline{\mathbf{m W}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.066+\mathrm{j} \cdot 0.323+1) /[1-(0.066+\mathrm{j} \cdot 0.323)]=$ $45.63 \Omega+\mathrm{j} \cdot 33.07 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=22.81 \Omega+\mathrm{j} \cdot 16.54 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.306+\mathrm{j} \cdot 0.297=0.426 \angle 135.9^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.426, \arg (\Gamma)=135.9^{\circ}$
$\theta_{\mathrm{S} 1}=169.7^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-0.942 ; \theta_{\mathrm{P} 1}=136.7^{\circ}$ and $\theta_{\mathrm{S} 2}=54.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.942 ; \theta_{\mathrm{P} 2}=43.3^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>15.65 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.5+11.8=20.3 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.5+7.8=16.3 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.8+5.7=17.5 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.8+7.8=19.6 \mathrm{~dB}$ b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.99 \mathrm{~dB}=1.256, \mathrm{~F}_{2}=1.12 \mathrm{~dB}=1.294, \mathrm{~F}_{3}=0.67 \mathrm{~dB}=1.167, \mathrm{~F}_{4}=0.72 \mathrm{~dB}=1.180, \mathrm{G}_{3}=5.7 \mathrm{~dB}=3.715, \mathrm{G}_{4}=$ $7.8 \mathrm{~dB}=6.026$;
$\mathrm{F}(4,1)=1.180+(1.256-1) / 6.026=1.223=0.87 \mathrm{~dB} ; \mathrm{F}(3,2)=1.167+(1.294-1) / 3.715=1.246=0.96 \mathrm{~dB} ;$ $\mathrm{F}(4,1)<\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{4 , 1}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
1.7	$0.408+\mathrm{j} \cdot(-0.368)$	0.549	0.770	0.649
4.9	$-0.151+\mathrm{j} \cdot(-0.435)$	0.461	0.497	0.530

b) $\mu(1.7 \mathrm{GHz})>\mu(4.9 \mathrm{GHz})$ so the transistor has better stability at 1.7 GHz
c) we use S parameters for $\mathrm{f}=1.7 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=111.05=20.46 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.190, \mathrm{U} _$minus $=-1.508 \mathrm{~dB}$, U_plus $=1.827 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 32

1. $\mathrm{z}=0.925-\mathrm{j} \cdot 0.760 ; \mathrm{Y}=1 / 50 \Omega /(0.925-\mathrm{j} \cdot 0.760)=0.0129 \mathrm{~S}+\mathrm{j} \cdot(0.0106) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.925$ $-\mathrm{j} \cdot 0.760-1) /(0.925-\mathrm{j} \cdot 0.760+1)=0.101+\mathrm{j} \cdot(-0.355)=0.369 \angle-74.1^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.15 \mathrm{~mW}=0.61 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=0.61 \mathrm{dBm}+9.6 \mathrm{~dB}=10.21 \mathrm{dBm}=10.49 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=10.21 \mathrm{dBm}-6.95 \mathrm{~dB}=3.26 \mathrm{dBm}=2.12 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=10.49 \mathrm{~mW}-$
$2.12 \mathrm{~mW}=8.37 \mathrm{~mW}=9.23 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=9.23 \mathrm{dBm}+10.7 \mathrm{~dB}=19.93 \mathrm{dBm}=98.35 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.093+\mathrm{j} \cdot 0.067+1) /[1-(0.093+\mathrm{j} \cdot 0.067)]=$ $59.66 \Omega+\mathrm{j} \cdot 8.10 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $Z / 2=29.83 \Omega+j \cdot 4.05 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.249+\mathrm{j} \cdot 0.063=0.257 \angle 165.7^{\circ}$;
c) Complex calculus from $\mathrm{L} 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.257, \arg (\Gamma)=165.7^{\circ}$
$\theta_{\mathrm{S} 1}=149.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-0.533 ; \theta_{\mathrm{P} 1}=152.0^{\circ}$ and $\theta_{\mathrm{S} 2}=44.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.533 ; \theta_{\mathrm{P} 2}=28.0^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>17.25 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.8+10.7=20.5 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.8+7.9=17.7 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.7+6.8=17.5 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.7+7.9=18.6 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.06 \mathrm{~dB}=1.276, \mathrm{~F}_{2}=1.20 \mathrm{~dB}=1.318, \mathrm{~F}_{3}=0.56 \mathrm{~dB}=1.138, \mathrm{~F}_{4}=0.72 \mathrm{~dB}=1.180, \mathrm{G}_{3}=6.8 \mathrm{~dB}=4.786, \mathrm{G}_{4}=$ $7.9 \mathrm{~dB}=6.166$;
$\mathrm{F}(4,1)=1.180+(1.276-1) / 6.166=1.225=0.88 \mathrm{~dB} ; \mathrm{F}(3,2)=1.138+(1.318-1) / 4.786=1.204=0.81 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
2.0	$0.125+\mathrm{j} \cdot(-0.330)$	0.353	0.760	0.713
2.2	$0.325+\mathrm{j} \cdot(-0.407)$	0.521	0.243	0.269

b) $\mu(2.0 \mathrm{GHz})>\mu(2.2 \mathrm{GHz})$ so the transistor has better stability at 2.0 GHz
c) we use S parameters for $\mathrm{f}=2.0 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=85.05=19.30 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.092$, U_minus $=-0.761 \mathrm{~dB}$, U_plus $=0.835 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 33

1. $\mathrm{z}=1.095-\mathrm{j} \cdot 0.755 ; \mathrm{Y}=1 / 50 \Omega /(1.095-\mathrm{j} \cdot 0.755)=0.0124 \mathrm{~S}+\mathrm{j} \cdot(0.0085) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(1.095$ $-\mathrm{j} \cdot 0.755-1) /(1.095-\mathrm{j} \cdot 0.755+1)=0.155+\mathrm{j} \cdot(-0.304)=0.342 \angle-63.0^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.95 \mathrm{~mW}=2.90 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=2.90 \mathrm{dBm}+8.2 \mathrm{~dB}=11.10 \mathrm{dBm}=12.88 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=11.10 \mathrm{dBm}-5.55 \mathrm{~dB}=5.55 \mathrm{dBm}=3.59 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=12.88 \mathrm{~mW}$ -
$3.59 \mathrm{~mW}=9.29 \mathrm{~mW}=9.68 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=9.68 \mathrm{dBm}+10.4 \mathrm{~dB}=20.08 \mathrm{dBm}=101.91 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.623+\mathrm{j} \cdot 0.246+1) /[1-(-0.623+\mathrm{j} \cdot 0.246)]=$ $10.23 \Omega+\mathrm{j} \cdot 9.13 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $Z / 2=5.12 \Omega+\mathrm{j} \cdot 4.56 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.802+\mathrm{j} \cdot 0.149=0.816 \angle 169.5^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.816, \arg (\Gamma)=169.5^{\circ}$
$\theta_{\mathrm{S} 1}=167.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-2.821 ; \theta_{\mathrm{P} 1}=109.5^{\circ}$ and $\theta_{\mathrm{S} 2}=22.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=2.821 ; \theta_{\mathrm{P} 2}=70.5^{\circ}$, all lines with $\mathrm{Z}_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>15.65 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.6+10.2=18.8 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.6+7.8=16.4 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.2+6.0=16.2 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.2+7.8=18.0 \mathrm{~dB}$ b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.08 \mathrm{~dB}=1.282, \mathrm{~F}_{2}=1.18 \mathrm{~dB}=1.312, \mathrm{~F}_{3}=0.55 \mathrm{~dB}=1.135, \mathrm{~F}_{4}=0.71 \mathrm{~dB}=1.178, \mathrm{G}_{3}=6.0 \mathrm{~dB}=3.981, \mathrm{G}_{4}=$ $7.8 \mathrm{~dB}=6.026$;
$\mathrm{F}(4,1)=1.178+(1.282-1) / 6.026=1.224=0.88 \mathrm{~dB} ; \mathrm{F}(3,2)=1.135+(1.312-1) / 3.981=1.213=0.84 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
0.4	$0.402+\mathrm{j} \cdot(0.068)$	0.408	0.250	0.557
5.3	$-0.201+\mathrm{j} \cdot(-0.397)$	0.445	0.556	0.813

b) $\mu^{\prime}(0.4 \mathrm{GHz})<\mu^{\prime}(5.3 \mathrm{GHz})$ so the transistor has better stability at 5.3 GHz
c) we use S parameters for $\mathrm{f}=5.3 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=99.58=19.98 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.408, \mathrm{U} _$minus $=-2.972 \mathrm{~dB}$, U_plus $=4.553 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 34

$1 . \mathrm{z}=1.005+\mathrm{j} \cdot 1.000 ; \mathrm{Y}=1 / 50 \Omega /(1.005+\mathrm{j} \cdot 1.000)=0.0100 \mathrm{~S}+\mathrm{j} \cdot(-0.0100) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(1.005+\mathrm{j} \cdot 1.000-1) /(1.005+\mathrm{j} \cdot 1.000+1)=0.201+\mathrm{j} \cdot(0.398)=0.446 \angle 63.2^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.20 \mathrm{~mW}=0.79 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=0.79 \mathrm{dBm}+6.1 \mathrm{~dB}=6.89 \mathrm{dBm}=4.89 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}=$ $6.89 \mathrm{dBm}-6.60 \mathrm{~dB}=0.29 \mathrm{dBm}=1.07 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=4.89 \mathrm{~mW}-1.07 \mathrm{~mW}=$ $3.82 \mathrm{~mW}=5.82 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=5.82 \mathrm{dBm}+11.3 \mathrm{~dB}=17.12 \mathrm{dBm}=51.52 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.077+\mathrm{j} \cdot 0.311+1) /[1-(-0.077+\mathrm{j} \cdot 0.311)]=$ $35.70 \Omega+\mathrm{j} \cdot 24.75 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=17.85 \Omega+\mathrm{j} \cdot 12.37 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.426+\mathrm{j} \cdot 0.260=0.499 \angle 148.6^{\circ}$;
c) Complex calculus from $L 7 / 2021, S 165 \div 169,2$ solutions for the match, $|\Gamma|=0.499, \arg (\Gamma)=148.6^{\circ}$
$\theta_{\mathrm{S} 1}=165.7^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-1.153 ; \theta_{\mathrm{P} 1}=130.9^{\circ}$ and $\theta_{\mathrm{S} 2}=45.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.153 ; \theta_{\mathrm{P} 2}=49.1^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>16.90 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.6+11.0=19.6 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.6+8.6=17.2 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.0+6.4=17.4 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.0+8.6=19.6 \mathrm{~dB}$ b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.09 \mathrm{~dB}=1.285, \mathrm{~F}_{2}=1.22 \mathrm{~dB}=1.324, \mathrm{~F}_{3}=0.63 \mathrm{~dB}=1.156, \mathrm{~F}_{4}=0.82 \mathrm{~dB}=1.208, \mathrm{G}_{3}=6.4 \mathrm{~dB}=4.365, \mathrm{G}_{4}=$ $8.6 \mathrm{~dB}=7.244$;
$\mathrm{F}(4,1)=1.208+(1.285-1) / 7.244=1.247=0.96 \mathrm{~dB} ; \mathrm{F}(3,2)=1.156+(1.324-1) / 4.365=1.230=0.90 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
2.3	$0.077+\mathrm{j} \cdot(-0.339)$	0.347	0.826	0.784
4.0	$-0.009+\mathrm{j} \cdot(-0.489)$	0.489	0.387	0.418

b) $\mu(2.3 \mathrm{GHz})>\mu(4.0 \mathrm{GHz})$ so the transistor has better stability at 2.3 GHz
c) we use S parameters for $\mathrm{f}=2.3 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=65.10=18.14 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.072$, U_minus $=-0.605 \mathrm{~dB}$, U_plus $=0.651 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 35

$1 . \mathrm{z}=1.135+\mathrm{j} \cdot 0.885 ; \mathrm{Y}=1 / 50 \Omega /(1.135+\mathrm{j} \cdot 0.885)=0.0110 \mathrm{~S}+\mathrm{j} \cdot(-0.0085) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(1.135+\mathrm{j} \cdot 0.885-1) /(1.135+\mathrm{j} \cdot 0.885+1)=0.201+\mathrm{j} \cdot(0.331)=0.387 \angle 58.8^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.25 \mathrm{~mW}=0.97 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=0.97 \mathrm{dBm}+9.9 \mathrm{~dB}=10.87 \mathrm{dBm}=12.22 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=10.87 \mathrm{dBm}-5.90 \mathrm{~dB}=4.97 \mathrm{dBm}=3.14 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=12.22 \mathrm{~mW}$ -
$3.14 \mathrm{~mW}=9.08 \mathrm{~mW}=9.58 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=9.58 \mathrm{dBm}+9.6 \mathrm{~dB}=19.18 \mathrm{dBm}=82.77 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.191+\mathrm{j} \cdot 0.767+1) /[1-(0.191+\mathrm{j} \cdot 0.767)]=$ $15.10 \Omega+\mathrm{j} \cdot 61.72 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=7.55 \Omega+\mathrm{j} \cdot 30.86 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.350+\mathrm{j} \cdot 0.724=0.804 \angle 115.8^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.804, \arg (\Gamma)=115.8^{\circ}$
$\theta_{\mathrm{S} 1}=13.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-2.701 ; \theta_{\mathrm{P} 1}=110.3^{\circ}$ and $\theta_{\mathrm{S} 2}=50.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=2.701 ; \theta_{\mathrm{P} 2}=69.7^{\circ}$, all lines with Z_{0} $=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>16.85 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.8+10.3=20.1 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.8+8.7=18.5 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.3+6.7=17.0 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.3+8.7=19.0 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.08 \mathrm{~dB}=1.282, \mathrm{~F}_{2}=1.12 \mathrm{~dB}=1.294, \mathrm{~F}_{3}=0.62 \mathrm{~dB}=1.153, \mathrm{~F}_{4}=0.73 \mathrm{~dB}=1.183, \mathrm{G}_{3}=6.7 \mathrm{~dB}=4.677, \mathrm{G}_{4}=$ $8.7 \mathrm{~dB}=7.413$;
$\mathrm{F}(4,1)=1.183+(1.282-1) / 7.413=1.221=0.87 \mathrm{~dB} ; \mathrm{F}(3,2)=1.153+(1.294-1) / 4.677=1.216=0.85 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
2.8	$-0.007+\mathrm{j} \cdot(-0.350)$	0.350	0.908	0.942
1.3	$0.454+\mathrm{j} \cdot(-0.280)$	0.533	0.169	0.880

b) $\mu^{\prime}(2.8 \mathrm{GHz})>\mu^{\prime}(1.3 \mathrm{GHz})$ so the transistor has better stability at 2.8 GHz
c) we use S parameters for $\mathrm{f}=2.8 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=44.84=16.52 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.052$, U_minus $=-0.443 \mathrm{~dB}$, U_plus $=0.467 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 36

$1 . \mathrm{z}=0.725-\mathrm{j} \cdot 0.960 ; \mathrm{Y}=1 / 50 \Omega /(0.725-\mathrm{j} \cdot 0.960)=0.0100 \mathrm{~S}+\mathrm{j} \cdot(0.0133) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.725$ $-\mathrm{j} \cdot 0.960-1) /(0.725-\mathrm{j} \cdot 0.960+1)=0.115+\mathrm{j} \cdot(-0.493)=0.506 \angle-76.9^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\operatorname{Pin}=2.50 \mathrm{~mW}=3.98 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=3.98 \mathrm{dBm}+8.0 \mathrm{~dB}=11.98 \mathrm{dBm}=15.77 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=11.98 \mathrm{dBm}-5.20 \mathrm{~dB}=6.78 \mathrm{dBm}=4.76 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=15.77 \mathrm{~mW}$ -
$4.76 \mathrm{~mW}=11.01 \mathrm{~mW}=10.42 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=10.42 \mathrm{dBm}+9.3 \mathrm{~dB}=19.72 \mathrm{dBm}=93.71 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.093+\mathrm{j} \cdot 0.068+1) /[1-(0.093+\mathrm{j} \cdot 0.068)]=$ $59.64 \Omega+\mathrm{j} \cdot 8.22 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=29.82 \Omega+\mathrm{j} \cdot 4.11 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.250+\mathrm{j} \cdot 0.064=0.258 \angle 165.5^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.258, \arg (\Gamma)=165.5^{\circ}$
$\theta_{\mathrm{S} 1}=149.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-0.533 ; \theta_{\mathrm{P} 1}=151.9^{\circ}$ and $\theta_{\mathrm{S} 2}=44.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.533 ; \theta_{\mathrm{P} 2}=28.1^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>15.85 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.2+10.0=19.2 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.2+8.5=17.7 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.0+6.3=16.3 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.0+8.5=18.5 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.92 \mathrm{~dB}=1.236, \mathrm{~F}_{2}=1.15 \mathrm{~dB}=1.303, \mathrm{~F}_{3}=0.66 \mathrm{~dB}=1.164, \mathrm{~F}_{4}=0.74 \mathrm{~dB}=1.186, \mathrm{G}_{3}=6.3 \mathrm{~dB}=4.266, \mathrm{G}_{4}=$ $8.5 \mathrm{~dB}=7.079$;
$\mathrm{F}(4,1)=1.186+(1.236-1) / 7.079=1.219=0.86 \mathrm{~dB} ; \mathrm{F}(3,2)=1.164+(1.303-1) / 4.266=1.235=0.92 \mathrm{~dB} ;$ $\mathrm{F}(4,1)<\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{4 , 1}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
1.9	$0.138+\mathrm{j} \cdot(-0.322)$	0.350	0.737	0.689
4.8	$-0.137+\mathrm{j} \cdot(-0.444)$	0.464	0.484	0.517

b) $\mu(1.9 \mathrm{GHz})>\mu(4.8 \mathrm{GHz})$ so the transistor has better stability at 1.9 GHz
c) we use S parameters for $\mathrm{f}=1.9 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=94.46=19.75 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.100, \mathrm{U} _$minus $=-0.826 \mathrm{~dB}$, U_plus $=0.913 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 37

1. $\mathrm{z}=0.920-\mathrm{j} \cdot 0.915 ; \mathrm{Y}=1 / 50 \Omega /(0.920-\mathrm{j} \cdot 0.915)=0.0109 \mathrm{~S}+\mathrm{j} \cdot(0.0109) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.920$ $-\mathrm{j} \cdot 0.915-1) /(0.920-\mathrm{j} \cdot 0.915+1)=0.151+\mathrm{j} \cdot(-0.405)=0.432 \angle-69.5^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.15 \mathrm{~mW}=0.61 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=0.61 \mathrm{dBm}+8.9 \mathrm{~dB}=9.51 \mathrm{dBm}=8.93 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}=$ $9.51 \mathrm{dBm}-4.50 \mathrm{~dB}=5.01 \mathrm{dBm}=3.17 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=8.93 \mathrm{~mW}-3.17 \mathrm{~mW}=$ $5.76 \mathrm{~mW}=7.60 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=7.60 \mathrm{dBm}+8.9 \mathrm{~dB}=16.50 \mathrm{dBm}=44.71 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.088+\mathrm{j} \cdot 0.785+1) /[1-(-0.088+\mathrm{j} \cdot 0.785)]=$ $10.45 \Omega+\mathrm{j} \cdot 43.61 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $Z / 2=5.22 \Omega+\mathrm{j} \cdot 21.81 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.567+\mathrm{j} \cdot 0.619=0.839 \angle 132.5^{\circ}$;
c) Complex calculus from $\mathrm{L} 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.839, \arg (\Gamma)=132.5^{\circ}$
$\theta_{\mathrm{S} 1}=7.3^{\circ} ; \operatorname{Im}\left(\mathrm{ys}^{\prime}\right)=-3.082 ; \theta_{\mathrm{P} 1}=108.0^{\circ}$ and $\theta_{\mathrm{S} 2}=40.2^{\circ} ; \operatorname{Im}\left(\mathrm{yS}_{\mathrm{S}}\right)=3.082 ; \theta_{\mathrm{P} 2}=72.0^{\circ}$, all lines with Z_{0} $=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>16.05 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.1+11.2=19.3 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.1+8.5=16.6 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.2+6.9=18.1 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.2+8.5=19.7 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.02 \mathrm{~dB}=1.265, \mathrm{~F}_{2}=1.20 \mathrm{~dB}=1.318, \mathrm{~F}_{3}=0.53 \mathrm{~dB}=1.130, \mathrm{~F}_{4}=0.77 \mathrm{~dB}=1.194, \mathrm{G}_{3}=6.9 \mathrm{~dB}=4.898, \mathrm{G}_{4}=$ $8.5 \mathrm{~dB}=7.079$;
$\mathrm{F}(4,1)=1.194+(1.265-1) / 7.079=1.231=0.90 \mathrm{~dB} ; \mathrm{F}(3,2)=1.130+(1.318-1) / 4.898=1.195=0.77 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
2.7	$0.011+\mathrm{j} \cdot(-0.347)$	0.347	0.895	0.934
3.3	$0.119+\mathrm{j} \cdot(-0.488)$	0.502	0.325	0.791

b) $\mu^{\prime}(2.7 \mathrm{GHz})>\mu^{\prime}(3.3 \mathrm{GHz})$ so the transistor has better stability at 2.7 GHz
c) we use S parameters for $\mathrm{f}=2.7 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=48.10=16.82 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.055$, U_minus $=-0.468 \mathrm{~dB}$, U_plus $=0.495 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 38

$1 . \mathrm{z}=1.010-\mathrm{j} \cdot 0.865 ; \mathrm{Y}=1 / 50 \Omega /(1.010-\mathrm{j} \cdot 0.865)=0.0114 \mathrm{~S}+\mathrm{j} \cdot(0.0098) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(1.010$ $-\mathrm{j} \cdot 0.865-1) /(1.010-\mathrm{j} \cdot 0.865+1)=0.160+\mathrm{j} \cdot(-0.361)=0.395 \angle-66.1^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=2.15 \mathrm{~mW}=3.32 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=3.32 \mathrm{dBm}+9.8 \mathrm{~dB}=13.12 \mathrm{dBm}=20.53 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=13.12 \mathrm{dBm}-4.35 \mathrm{~dB}=8.77 \mathrm{dBm}=7.54 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=20.53 \mathrm{~mW}$ -
$7.54 \mathrm{~mW}=12.99 \mathrm{~mW}=11.14 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=11.14 \mathrm{dBm}+8.8 \mathrm{~dB}=19.94 \mathrm{dBm}=98.55 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.318+\mathrm{j} \cdot 0.652+1) /[1-(-0.318+\mathrm{j} \cdot 0.652)]=$ $10.96 \Omega+\mathrm{j} \cdot 30.15 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=5.48 \Omega+\mathrm{j} \cdot 15.08 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.679+\mathrm{j} \cdot 0.456=0.818 \angle 146.1^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.818, \arg (\Gamma)=146.1^{\circ}$ $\theta_{\mathrm{S} 1}=179.4^{\circ} ; \operatorname{Im}\left(\mathrm{yS}_{\mathrm{S}}\right)=-2.840 ; \theta_{\mathrm{P} 1}=109.4^{\circ}$ and $\theta_{\mathrm{S} 2}=34.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=2.840 ; \theta_{\mathrm{P} 2}=70.6^{\circ}$, all lines with $\mathrm{Z}_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>15.75 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.4+10.4=19.8 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.4+7.1=16.5 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.4+5.7=16.1 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.4+7.1=17.5 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.96 \mathrm{~dB}=1.247, \mathrm{~F}_{2}=1.21 \mathrm{~dB}=1.321, \mathrm{~F}_{3}=0.61 \mathrm{~dB}=1.151, \mathrm{~F}_{4}=0.73 \mathrm{~dB}=1.183, \mathrm{G}_{3}=5.7 \mathrm{~dB}=3.715, \mathrm{G}_{4}=$ $7.1 \mathrm{~dB}=5.129$;
$\mathrm{F}(4,1)=1.183+(1.247-1) / 5.129=1.231=0.90 \mathrm{~dB} ; \mathrm{F}(3,2)=1.151+(1.321-1) / 3.715=1.237=0.92 \mathrm{~dB} ;$ $\mathrm{F}(4,1)<\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{4 , 1}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
2.5	$0.182+\mathrm{j} \cdot(-0.534)$	0.564	0.902	0.917
1.6	$0.414+\mathrm{j} \cdot(-0.328)$	0.529	0.192	0.859

b) $\mu^{\prime}(2.5 \mathrm{GHz})>\mu^{\prime}(1.6 \mathrm{GHz})$ so the transistor has better stability at 2.5 GHz
c) we use S parameters for $\mathrm{f}=2.5 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=53.79=17.31 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.155$, U_minus $=-1.249 \mathrm{~dB}$, U_plus $=1.460 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 39

1. $\mathrm{z}=1.175-\mathrm{j} \cdot 0.910 ; \mathrm{Y}=1 / 50 \Omega /(1.175-\mathrm{j} \cdot 0.910)=0.0106 \mathrm{~S}+\mathrm{j} \cdot(0.0082) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(1.175$ $-\mathrm{j} \cdot 0.910-1) /(1.175-\mathrm{j} \cdot 0.910+1)=0.217+\mathrm{j} \cdot(-0.327)=0.393 \angle-56.4^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.65 \mathrm{~mW}=2.17 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=2.17 \mathrm{dBm}+7.2 \mathrm{~dB}=9.37 \mathrm{dBm}=8.66 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}=$ $9.37 \mathrm{dBm}-4.25 \mathrm{~dB}=5.12 \mathrm{dBm}=3.25 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=8.66 \mathrm{~mW}-3.25 \mathrm{~mW}=$ $5.40 \mathrm{~mW}=7.33 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=7.33 \mathrm{dBm}+9.7 \mathrm{~dB}=17.03 \mathrm{dBm}=50.44 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.444+\mathrm{j} \cdot 0.229+1) /[1-(-0.444+\mathrm{j} \cdot 0.229)]=$ $17.55 \Omega+\mathrm{j} \cdot 10.71 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=8.78 \Omega+\mathrm{j} \cdot 5.36 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.687+\mathrm{j} \cdot 0.154=0.704 \angle 167.4^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.704, \arg (\Gamma)=167.4^{\circ}$ $\theta_{\mathrm{S} 1}=163.7^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-1.984 ; \theta_{\mathrm{P} 1}=116.7^{\circ}$ and $\theta_{\mathrm{S} 2}=28.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.984 ; \theta_{\mathrm{P} 2}=63.3^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>17.50 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.7+11.3=21.0 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.7+8.9=18.6 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.3+6.6=17.9 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.3+8.9=20.2 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.99 \mathrm{~dB}=1.256, \mathrm{~F}_{2}=1.15 \mathrm{~dB}=1.303, \mathrm{~F}_{3}=0.60 \mathrm{~dB}=1.148, \mathrm{~F}_{4}=0.85 \mathrm{~dB}=1.216, \mathrm{G}_{3}=6.6 \mathrm{~dB}=4.571, \mathrm{G}_{4}=$ $8.9 \mathrm{~dB}=7.762$;
$\mathrm{F}(4,1)=1.216+(1.256-1) / 7.762=1.249=0.97 \mathrm{~dB} ; \mathrm{F}(3,2)=1.148+(1.303-1) / 4.571=1.214=0.84 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
2.6	$0.026+\mathrm{j} \cdot(-0.349)$	0.350	0.875	0.921
4.3	$-0.062+\mathrm{j} \cdot(-0.478)$	0.482	0.418	0.783

b) $\mu^{\prime}(2.6 \mathrm{GHz})>\mu^{\prime}(4.3 \mathrm{GHz})$ so the transistor has better stability at 2.6 GHz
c) we use S parameters for $\mathrm{f}=2.6 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=51.69=17.13 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.059$, U_minus $=-0.498 \mathrm{~dB}$, U_plus $=0.528 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 40

1. $\mathrm{z}=0.950+\mathrm{j} \cdot 1.240 ; \mathrm{Y}=1 / 50 \Omega /(0.950+\mathrm{j} \cdot 1.240)=0.0078 \mathrm{~S}+\mathrm{j} \cdot(-0.0102) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(0.950+\mathrm{j} \cdot 1.240-1) /(0.950+\mathrm{j} \cdot 1.240+1)=0.270+\mathrm{j} \cdot(0.464)=0.537 \angle 59.9^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=2.10 \mathrm{~mW}=3.22 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=3.22 \mathrm{dBm}+6.1 \mathrm{~dB}=9.32 \mathrm{dBm}=8.55 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}=$ $9.32 \mathrm{dBm}-5.70 \mathrm{~dB}=3.62 \mathrm{dBm}=2.30 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=8.55 \mathrm{~mW}-2.30 \mathrm{~mW}=$ $6.25 \mathrm{~mW}=7.96 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=7.96 \mathrm{dBm}+11.2 \mathrm{~dB}=19.16 \mathrm{dBm}=82.42 \underline{\mathbf{m W}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.020+\mathrm{j} \cdot 0.209+1) /[1-(-0.020+\mathrm{j} \cdot 0.209)]=$ $44.09 \Omega+j \cdot 19.28 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=22.04 \Omega+\mathrm{j} \cdot 9.64 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.364+\mathrm{j} \cdot 0.182=0.407 \angle 153.4^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.407, \arg (\Gamma)=153.4^{\circ}$
$\theta_{\mathrm{S} 1}=160.3^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-0.891 ; \theta_{\mathrm{P} 1}=138.3^{\circ}$ and $\theta_{\mathrm{S} 2}=46.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.891 ; \theta_{\mathrm{P} 2}=41.7^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>17.15 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.0+11.5=20.5 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.0+8.3=17.3 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.5+6.0=17.5 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.5+8.3=19.8 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.05 \mathrm{~dB}=1.274, \mathrm{~F}_{2}=1.22 \mathrm{~dB}=1.324, \mathrm{~F}_{3}=0.65 \mathrm{~dB}=1.161, \mathrm{~F}_{4}=0.77 \mathrm{~dB}=1.194, \mathrm{G}_{3}=6.0 \mathrm{~dB}=3.981, \mathrm{G}_{4}=$ $8.3 \mathrm{~dB}=6.761$;
$\mathrm{F}(4,1)=1.194+(1.274-1) / 6.761=1.234=0.91 \mathrm{~dB} ; \mathrm{F}(3,2)=1.161+(1.324-1) / 3.981=1.243=0.94 \mathrm{~dB}$; $\mathrm{F}(4,1)<\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{4 , 1}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
1.3	$0.479+\mathrm{j} \cdot(-0.246)$	0.539	0.671	0.545
1.9	$0.372+\mathrm{j} \cdot(-0.372)$	0.526	0.217	0.240

b) $\mu(1.3 \mathrm{GHz})>\mu(1.9 \mathrm{GHz})$ so the transistor has better stability at 1.3 GHz
c) we use S parameters for $\mathrm{f}=1.3 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=183.89=22.65 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.229$, U_minus $=-1.794 \mathrm{~dB}$, U_plus $=2.263 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 41

$1 . \mathrm{z}=0.720+\mathrm{j} \cdot 1.115 ; \mathrm{Y}=1 / 50 \Omega /(0.720+\mathrm{j} \cdot 1.115)=0.0082 \mathrm{~S}+\mathrm{j} \cdot(-0.0127) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(0.720+\mathrm{j} \cdot 1.115-1) /(0.720+\mathrm{j} \cdot 1.115+1)=0.181+\mathrm{j} \cdot(0.531)=0.561 \angle 71.1^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.65 \mathrm{~mW}=2.17 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=2.17 \mathrm{dBm}+8.6 \mathrm{~dB}=10.77 \mathrm{dBm}=11.95 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=10.77 \mathrm{dBm}-5.00 \mathrm{~dB}=5.77 \mathrm{dBm}=3.78 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=11.95 \mathrm{~mW}$ -
$3.78 \mathrm{~mW}=8.17 \mathrm{~mW}=9.12 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=9.12 \mathrm{dBm}+9.4 \mathrm{~dB}=18.52 \mathrm{dBm}=71.19 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.338+\mathrm{j} \cdot 0.327+1) /[1-(-0.338+\mathrm{j} \cdot 0.327)]=$ $20.53 \Omega+\mathrm{j} \cdot 17.24 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=10.26 \Omega+\mathrm{j} \cdot 8.62 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.626+\mathrm{j} \cdot 0.233=0.668 \angle 159.6^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.668, \arg (\Gamma)=159.6^{\circ}$ $\theta_{\mathrm{S} 1}=166.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.795 ; \theta_{\mathrm{P} 1}=119.1^{\circ}$ and $\theta_{\mathrm{S} 2}=34.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.795 ; \theta_{\mathrm{P} 2}=60.9^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>16.55 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.4+10.0=18.4 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.4+8.8=17.2 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.0+6.9=16.9 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.0+8.8=18.8 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.98 \mathrm{~dB}=1.253, \mathrm{~F}_{2}=1.17 \mathrm{~dB}=1.309, \mathrm{~F}_{3}=0.65 \mathrm{~dB}=1.161, \mathrm{~F}_{4}=0.86 \mathrm{~dB}=1.219, \mathrm{G}_{3}=6.9 \mathrm{~dB}=4.898, \mathrm{G}_{4}=$ $8.8 \mathrm{~dB}=7.586$;
$\mathrm{F}(4,1)=1.219+(1.253-1) / 7.586=1.252=0.98 \mathrm{~dB} ; \mathrm{F}(3,2)=1.161+(1.309-1) / 4.898=1.225=0.88 \mathrm{~dB}$; $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
0.9	$0.506+\mathrm{j} \cdot(-0.105)$	0.517	0.530	0.645
3.7	$0.047+\mathrm{j} \cdot(-0.490)$	0.492	0.385	0.791

b) $\mu^{\prime}(0.9 \mathrm{GHz})<\mu^{\prime}(3.7 \mathrm{GHz})$ so the transistor has better stability at 3.7 GHz
c) we use S parameters for $\mathrm{f}=3.7 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=206.58=23.15 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.724$, U_minus $=-4.731 \mathrm{~dB}, \mathrm{U} _$plus $=11.184 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 42

$1 . \mathrm{z}=0.985-\mathrm{j} \cdot 1.175 ; \mathrm{Y}=1 / 50 \Omega /(0.985-\mathrm{j} \cdot 1.175)=0.0084 \mathrm{~S}+\mathrm{j} \cdot(0.0100) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.985$ $-\mathrm{j} \cdot 1.175-1) /(0.985-\mathrm{j} \cdot 1.175+1)=0.254+\mathrm{j} \cdot(-0.442)=0.509 \angle-60.1^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.25 \mathrm{~mW}=0.97 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=0.97 \mathrm{dBm}+8.8 \mathrm{~dB}=9.77 \mathrm{dBm}=9.48 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}=$ $9.77 \mathrm{dBm}-6.35 \mathrm{~dB}=3.42 \mathrm{dBm}=2.20 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=9.48 \mathrm{~mW}-2.20 \mathrm{~mW}=$ $7.28 \mathrm{~mW}=8.62 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=8.62 \mathrm{dBm}+10.7 \mathrm{~dB}=19.32 \mathrm{dBm}=85.59 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.097+\mathrm{j} \cdot 0.071+1) /[1-(-0.097+\mathrm{j} \cdot 0.071)]=$ $40.78 \Omega+\mathrm{j} \cdot 5.88 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=20.39 \Omega+\mathrm{j} \cdot 2.94 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.418+\mathrm{j} \cdot 0.059=0.422 \angle 171.9^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.422, \arg (\Gamma)=171.9^{\circ}$
$\theta_{\mathrm{S} 1}=151.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-0.932 ; \theta_{\mathrm{P} 1}=137.0^{\circ}$ and $\theta_{\mathrm{S} 2}=36.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.932 ; \theta_{\mathrm{P} 2}=43.0^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>16.90 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.7+11.1=20.8 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.7+7.3=17.0 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.1+6.9=18.0 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.1+7.3=18.4 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.97 \mathrm{~dB}=1.250, \mathrm{~F}_{2}=1.17 \mathrm{~dB}=1.309, \mathrm{~F}_{3}=0.62 \mathrm{~dB}=1.153, \mathrm{~F}_{4}=0.87 \mathrm{~dB}=1.222, \mathrm{G}_{3}=6.9 \mathrm{~dB}=4.898, \mathrm{G}_{4}=$ $7.3 \mathrm{~dB}=5.370$;
$\mathrm{F}(4,1)=1.222+(1.250-1) / 5.370=1.268=1.03 \mathrm{~dB} ; \mathrm{F}(3,2)=1.153+(1.309-1) / 4.898=1.217=0.85 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
1.7	$0.169+\mathrm{j} \cdot(-0.312)$	0.355	0.689	0.640
4.7	$-0.125+\mathrm{j} \cdot(-0.451)$	0.468	0.472	0.505

b) $\mu(1.7 \mathrm{GHz})>\mu(4.7 \mathrm{GHz})$ so the transistor has better stability at 1.7 GHz
c) we use S parameters for $\mathrm{f}=1.7 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=116.95=20.68 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.119$, U_minus $=-0.974 \mathrm{~dB}$, U_plus $=1.097 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 43

$1 . \mathrm{z}=0.745-\mathrm{j} \cdot 0.835 ; \mathrm{Y}=1 / 50 \Omega /(0.745-\mathrm{j} \cdot 0.835)=0.0119 \mathrm{~S}+\mathrm{j} \cdot(0.0133) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.745$ $-\mathrm{j} \cdot 0.835-1) /(0.745-\mathrm{j} \cdot 0.835+1)=0.067+\mathrm{j} \cdot(-0.446)=0.451 \angle-81.4^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.10 \mathrm{~mW}=0.41 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=0.41 \mathrm{dBm}+7.6 \mathrm{~dB}=8.01 \mathrm{dBm}=6.33 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}=$ $8.01 \mathrm{dBm}-6.45 \mathrm{~dB}=1.56 \mathrm{dBm}=1.43 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=6.33 \mathrm{~mW}-1.43 \mathrm{~mW}=$ $4.90 \mathrm{~mW}=6.90 \mathrm{dBm}$; Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=6.90 \mathrm{dBm}+9.5 \mathrm{~dB}=16.40 \mathrm{dBm}=43.64 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.308+\mathrm{j} \cdot 0.105+1) /[1-(-0.308+\mathrm{j} \cdot 0.105)]=$ $25.96 \Omega+\mathrm{j} \cdot 6.10 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=12.98 \Omega+\mathrm{j} \cdot 3.05 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.584+\mathrm{j} \cdot 0.077=0.589 \angle 172.5^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.589, \arg (\Gamma)=172.5^{\circ}$
$\theta_{\mathrm{S} 1}=156.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.458 ; \theta_{\mathrm{P} 1}=124.4^{\circ}$ and $\theta_{\mathrm{S} 2}=30.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.458 ; \theta_{\mathrm{P} 2}=55.6^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>16.90 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.9+10.9=19.8 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.9+8.5=17.4 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.9+6.6=17.5 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.9+8.5=19.4 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.02 \mathrm{~dB}=1.265, \mathrm{~F}_{2}=1.26 \mathrm{~dB}=1.337, \mathrm{~F}_{3}=0.50 \mathrm{~dB}=1.122, \mathrm{~F}_{4}=0.75 \mathrm{~dB}=1.189, \mathrm{G}_{3}=6.6 \mathrm{~dB}=4.571, \mathrm{G}_{4}=$ $8.5 \mathrm{~dB}=7.079$;
$\mathrm{F}(4,1)=1.189+(1.265-1) / 7.079=1.226=0.88 \mathrm{~dB} ; \mathrm{F}(3,2)=1.122+(1.337-1) / 4.571=1.196=0.78 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
2.7	$0.111+\mathrm{j} \cdot(-0.558)$	0.569	0.922	0.933
4.4	$-0.079+\mathrm{j} \cdot(-0.473)$	0.479	0.431	0.784

b) $\mu^{\prime}(2.7 \mathrm{GHz})>\mu^{\prime}(4.4 \mathrm{GHz})$ so the transistor has better stability at 2.7 GHz
c) we use S parameters for $\mathrm{f}=2.7 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=46.65=16.69 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.151, \mathrm{U} _$minus $=-1.224 \mathrm{~dB}$, U_plus $=1.425 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 44

$1 . \mathrm{z}=1.280+\mathrm{j} \cdot 1.205 ; \mathrm{Y}=1 / 50 \Omega /(1.280+\mathrm{j} \cdot 1.205)=0.0083 \mathrm{~S}+\mathrm{j} \cdot(-0.0078) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(1.280+\mathrm{j} \cdot 1.205-1) /(1.280+\mathrm{j} \cdot 1.205+1)=0.314+\mathrm{j} \cdot(0.362)=0.480 \angle 49.1^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=3.45 \mathrm{~mW}=5.38 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=5.38 \mathrm{dBm}+6.9 \mathrm{~dB}=12.28 \mathrm{dBm}=16.90 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=12.28 \mathrm{dBm}-4.30 \mathrm{~dB}=7.98 \mathrm{dBm}=6.28 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=16.90 \mathrm{~mW}$ -
$6.28 \mathrm{~mW}=10.62 \mathrm{~mW}=10.26 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=10.26 \mathrm{dBm}+8.3 \mathrm{~dB}=18.56 \mathrm{dBm}=71.80 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.262+\mathrm{j} \cdot 0.099+1) /[1-(0.262+\mathrm{j} \cdot 0.099)]=$ $83.11 \Omega+\mathrm{j} \cdot 17.86 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=41.55 \Omega+\mathrm{j} \cdot 8.93 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.082+\mathrm{j} \cdot 0.106=0.134 \angle 127.8^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.134, \arg (\Gamma)=127.8^{\circ}$ $\theta_{\mathrm{S} 1}=164.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-0.270 ; \theta_{\mathrm{P} 1}=164.9^{\circ}$ and $\theta_{\mathrm{S} 2}=67.2^{\circ} ; \operatorname{Im}\left(\mathrm{yS}_{\mathrm{S}}\right)=0.270 ; \theta_{\mathrm{P} 2}=15.1^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>16.45 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.8+10.6=19.4 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.8+8.2=17.0 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.6+6.6=17.2 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.6+8.2=18.8 \mathrm{~dB}$ b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.90 \mathrm{~dB}=1.230, \mathrm{~F}_{2}=1.23 \mathrm{~dB}=1.327, \mathrm{~F}_{3}=0.58 \mathrm{~dB}=1.143, \mathrm{~F}_{4}=0.89 \mathrm{~dB}=1.227, \mathrm{G}_{3}=6.6 \mathrm{~dB}=4.571, \mathrm{G}_{4}=$ $8.2 \mathrm{~dB}=6.607$;
$\mathrm{F}(4,1)=1.227+(1.230-1) / 6.607=1.262=1.01 \mathrm{~dB} ; \mathrm{F}(3,2)=1.143+(1.327-1) / 4.571=1.215=0.84 \mathrm{~dB}$; $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
2.6	$0.146+\mathrm{j} \cdot(-0.550)$	0.569	0.910	0.922
2.9	$0.195+\mathrm{j} \cdot(-0.470)$	0.509	0.293	0.800

b) $\mu^{\prime}(2.6 \mathrm{GHz})>\mu^{\prime}(2.9 \mathrm{GHz})$ so the transistor has better stability at 2.6 GHz
c) we use S parameters for $\mathrm{f}=2.6 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=50.09=17.00 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.153$, U_minus $=-1.236 \mathrm{~dB}$, U_plus $=1.442 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 45

1. $\mathrm{z}=0.910-\mathrm{j} \cdot 1.295 ; \mathrm{Y}=1 / 50 \Omega /(0.910-\mathrm{j} \cdot 1.295)=0.0073 \mathrm{~S}+\mathrm{j} \cdot(0.0103) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.910$ $-\mathrm{j} \cdot 1.295-1) /(0.910-\mathrm{j} \cdot 1.295+1)=0.283+\mathrm{j} \cdot(-0.486)=0.563 \angle-59.8^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=1.20 \mathrm{~mW}=0.79 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=0.79 \mathrm{dBm}+7.9 \mathrm{~dB}=8.69 \mathrm{dBm}=7.40 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}=$ $8.69 \mathrm{dBm}-5.85 \mathrm{~dB}=2.84 \mathrm{dBm}=1.92 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=7.40 \mathrm{~mW}-1.92 \mathrm{~mW}=$ $5.48 \mathrm{~mW}=7.38 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=7.38 \mathrm{dBm}+8.3 \mathrm{~dB}=15.68 \mathrm{dBm}=37.02 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(-0.345+\mathrm{j} \cdot 0.191+1) /[1-(-0.345+\mathrm{j} \cdot 0.191)]=$ $22.88 \Omega+\mathrm{j} \cdot 10.35 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=11.44 \Omega+\mathrm{j} \cdot 5.17 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.616+\mathrm{j} \cdot 0.136=0.631 \angle 167.5^{\circ}$;
c) Complex calculus from $L 7 / 2021, S 165 \div 169,2$ solutions for the match, $|\Gamma|=0.631, \arg (\Gamma)=167.5^{\circ}$
$\theta_{\mathrm{S} 1}=160.8^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-1.627 ; \theta_{\mathrm{P} 1}=121.6^{\circ}$ and $\theta_{\mathrm{S} 2}=31.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.627 ; \theta_{\mathrm{P} 2}=58.4^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>16.35 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.9+11.6=20.5 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.9+8.1=17.0 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.6+6.2=17.8 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.6+8.1=19.7 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.01 \mathrm{~dB}=1.262, \mathrm{~F}_{2}=1.25 \mathrm{~dB}=1.334, \mathrm{~F}_{3}=0.64 \mathrm{~dB}=1.159, \mathrm{~F}_{4}=0.70 \mathrm{~dB}=1.175, \mathrm{G}_{3}=6.2 \mathrm{~dB}=4.169, \mathrm{G}_{4}=$ $8.1 \mathrm{~dB}=6.457$;
$\mathrm{F}(4,1)=1.175+(1.262-1) / 6.457=1.215=0.85 \mathrm{~dB} ; \mathrm{F}(3,2)=1.159+(1.334-1) / 4.169=1.239=0.93 \mathrm{~dB} ;$ $\mathrm{F}(4,1)<\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{4 , 1}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
0.6	$0.467+\mathrm{j} \cdot(0.010)$	0.467	0.394	0.305
3.4	$0.100+\mathrm{j} \cdot(-0.492)$	0.502	0.330	0.360

b) $\mu(0.6 \mathrm{GHz})<\mu(3.4 \mathrm{GHz})$ so the transistor has better stability at 3.4 GHz
c) we use S parameters for $\mathrm{f}=3.4 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\mathrm{TU} \max }=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=266.21=24.25 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.884$, U_minus $=-5.499 \mathrm{~dB}$, U_plus $=18.674 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 46

$1 . \mathrm{z}=1.125-\mathrm{j} \cdot 1.015 ; \mathrm{Y}=1 / 50 \Omega /(1.125-\mathrm{j} \cdot 1.015)=0.0098 \mathrm{~S}+\mathrm{j} \cdot(0.0088) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(1.125$ $-\mathrm{j} \cdot 1.015-1) /(1.125-\mathrm{j} \cdot 1.015+1)=0.234+\mathrm{j} \cdot(-0.366)=0.434 \angle-57.4^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=2.30 \mathrm{~mW}=3.62 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=3.62 \mathrm{dBm}+9.7 \mathrm{~dB}=13.32 \mathrm{dBm}=21.46 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=13.32 \mathrm{dBm}-6.20 \mathrm{~dB}=7.12 \mathrm{dBm}=5.15 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=21.46 \mathrm{~mW}$ -
$5.15 \mathrm{~mW}=16.32 \mathrm{~mW}=12.13 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=12.13 \mathrm{dBm}+9.7 \mathrm{~dB}=21.83 \mathrm{dBm}=152.27 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.043+\mathrm{j} \cdot 0.433+1) /[1-(0.043+\mathrm{j} \cdot 0.433)]=$ $36.74 \Omega+\mathrm{j} \cdot 39.24 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=18.37 \Omega+\mathrm{j} \cdot 19.62 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.351+\mathrm{j} \cdot 0.388=0.523 \angle 132.2^{\circ}$;
c) Complex calculus from $L 7 / 2021, \mathrm{~S} 165 \div 169,2$ solutions for the match, $|\Gamma|=0.523, \arg (\Gamma)=132.2^{\circ}$ $\theta_{\mathrm{S} 1}=174.7^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-1.228 ; \theta_{\mathrm{P} 1}=129.2^{\circ}$ and $\theta_{\mathrm{S} 2}=53.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.228 ; \theta_{\mathrm{P} 2}=50.8^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>15.40 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.1+10.5=18.6 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.1+8.4=16.5 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=10.5+5.6=16.1 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=10.5+8.4=18.9 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.95 \mathrm{~dB}=1.245, \mathrm{~F}_{2}=1.11 \mathrm{~dB}=1.291, \mathrm{~F}_{3}=0.64 \mathrm{~dB}=1.159, \mathrm{~F}_{4}=0.70 \mathrm{~dB}=1.175, \mathrm{G}_{3}=5.6 \mathrm{~dB}=3.631, \mathrm{G}_{4}=$ $8.4 \mathrm{~dB}=6.918$;
$\mathrm{F}(4,1)=1.175+(1.245-1) / 6.918=1.210=0.83 \mathrm{~dB} ; \mathrm{F}(3,2)=1.159+(1.291-1) / 3.631=1.239=0.93 \mathrm{~dB}$; $\mathrm{F}(4,1)<\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{4 , 1}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
0.3	$0.357+\mathrm{j} \cdot(0.082)$	0.366	0.206	0.585
5.1	$-0.177+\mathrm{j} \cdot(-0.418)$	0.454	0.528	0.804

b) $\mu^{\prime}(0.3 \mathrm{GHz})<\mu^{\prime}(5.1 \mathrm{GHz})$ so the transistor has better stability at 5.1 GHz
c) we use S parameters for $\mathrm{f}=5.1 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=109.67=20.40 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.446, \mathrm{U} _$minus $=-3.206 \mathrm{~dB}$, U_plus $=5.137 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 47

$1 . \mathrm{z}=1.090+\mathrm{j} \cdot 1.290 ; \mathrm{Y}=1 / 50 \Omega /(1.090+\mathrm{j} \cdot 1.290)=0.0076 \mathrm{~S}+\mathrm{j} \cdot(-0.0090) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(1.090+\mathrm{j} \cdot 1.290-1) /(1.090+\mathrm{j} \cdot 1.290+1)=0.307+\mathrm{j} \cdot(0.428)=0.527 \angle 54.3^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=2.15 \mathrm{~mW}=3.32 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=3.32 \mathrm{dBm}+9.1 \mathrm{~dB}=12.42 \mathrm{dBm}=17.48 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=12.42 \mathrm{dBm}-5.70 \mathrm{~dB}=6.72 \mathrm{dBm}=4.70 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=17.48 \mathrm{~mW}$ -
$4.70 \mathrm{~mW}=12.77 \mathrm{~mW}=11.06 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=11.06 \mathrm{dBm}+8.7 \mathrm{~dB}=19.76 \mathrm{dBm}=94.68 \underline{\mathbf{m W}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.470+\mathrm{j} \cdot 0.539+1) /[1-(0.470+\mathrm{j} \cdot 0.539)]=$ $42.75 \Omega+j \cdot 94.33 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=21.38 \Omega+\mathrm{j} \cdot 47.16 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=0.025+\mathrm{j} \cdot 0.644=0.645 \angle 87.8^{\circ}$;
c) Complex calculus from $L 7 / 2021, S 165 \div 169,2$ solutions for the match, $|\Gamma|=0.645, \arg (\Gamma)=87.8^{\circ}$
$\theta_{\mathrm{S} 1}=21.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.688 ; \theta_{\mathrm{P} 1}=120.6^{\circ}$ and $\theta_{\mathrm{S} 2}=71.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.688 ; \theta_{\mathrm{P} 2}=59.4^{\circ}$, all lines with Z_{0} $=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>16.40 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=8.8+11.0=19.8 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $8.8+7.9=16.7 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.0+6.5=17.5 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.0+7.9=18.9 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.07 \mathrm{~dB}=1.279, \mathrm{~F}_{2}=1.14 \mathrm{~dB}=1.300, \mathrm{~F}_{3}=0.58 \mathrm{~dB}=1.143, \mathrm{~F}_{4}=0.79 \mathrm{~dB}=1.199, \mathrm{G}_{3}=6.5 \mathrm{~dB}=4.467, \mathrm{G}_{4}=$ $7.9 \mathrm{~dB}=6.166$;
$\mathrm{F}(4,1)=1.199+(1.279-1) / 6.166=1.245=0.95 \mathrm{~dB} ; \mathrm{F}(3,2)=1.143+(1.300-1) / 4.467=1.210=0.83 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
2.9	$0.042+\mathrm{j} \cdot(-0.569)$	0.571	0.941	0.879
4.2	$-0.043+\mathrm{j} \cdot(-0.484)$	0.486	0.409	0.439

b) $\mu(2.9 \mathrm{GHz})>\mu(4.2 \mathrm{GHz})$ so the transistor has better stability at 2.9 GHz
c) we use S parameters for $\mathrm{f}=2.9 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=41.09=16.14 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.151, \mathrm{U} _$minus $=-1.223 \mathrm{~dB}$, U_plus $=1.424 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 48

$1 . \mathrm{z}=0.820+\mathrm{j} \cdot 0.720 ; \mathrm{Y}=1 / 50 \Omega /(0.820+\mathrm{j} \cdot 0.720)=0.0138 \mathrm{~S}+\mathrm{j} \cdot(-0.0121) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(0.820+\mathrm{j} \cdot 0.720-1) /(0.820+\mathrm{j} \cdot 0.720+1)=0.050+\mathrm{j} \cdot(0.376)=0.379 \angle 82.5^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=2.10 \mathrm{~mW}=3.22 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=3.22 \mathrm{dBm}+9.6 \mathrm{~dB}=12.82 \mathrm{dBm}=19.15 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=12.82 \mathrm{dBm}-5.80 \mathrm{~dB}=7.02 \mathrm{dBm}=5.04 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=19.15 \mathrm{~mW}$ -
$5.04 \mathrm{~mW}=14.11 \mathrm{~mW}=11.50 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=11.50 \mathrm{dBm}+9.3 \mathrm{~dB}=20.80 \mathrm{dBm}=120.14 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.116+\mathrm{j} \cdot 0.117+1) /[1-(0.116+\mathrm{j} \cdot 0.117)]=$ $61.17 \Omega+\mathrm{j} \cdot 14.71 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $\mathrm{Z} / 2=30.59 \Omega+\mathrm{j} \cdot 7.36 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.231+\mathrm{j} \cdot 0.112=0.257 \angle 154.0^{\circ}$;
c) Complex calculus from L7/2021, S165 $\div 169$, 2 solutions for the match, $|\Gamma|=0.257, \arg (\Gamma)=154.0^{\circ}$ $\theta_{\mathrm{S} 1}=155.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-0.531 ; \theta_{\mathrm{P} 1}=152.0^{\circ}$ and $\theta_{\mathrm{S} 2}=50.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.531 ; \theta_{\mathrm{P} 2}=28.0^{\circ}$, all lines with $Z_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>15.80 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.2+11.8=21.0 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.2+7.1=16.3 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.8+6.5=18.3 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.8+7.1=18.9 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=0.95 \mathrm{~dB}=1.245, \mathrm{~F}_{2}=1.12 \mathrm{~dB}=1.294, \mathrm{~F}_{3}=0.69 \mathrm{~dB}=1.172, \mathrm{~F}_{4}=0.79 \mathrm{~dB}=1.199, \mathrm{G}_{3}=6.5 \mathrm{~dB}=4.467, \mathrm{G}_{4}=$ $7.1 \mathrm{~dB}=5.129$;
$\mathrm{F}(4,1)=1.199+(1.245-1) / 5.129=1.247=0.96 \mathrm{~dB} ; \mathrm{F}(3,2)=1.172+(1.294-1) / 4.467=1.238=0.93 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
2.4	$0.061+\mathrm{j} \cdot(-0.344)$	0.349	0.844	0.900
3.9	$0.013+\mathrm{j} \cdot(-0.489)$	0.490	0.390	0.785

b) $\mu^{\prime}(2.4 \mathrm{GHz})>\mu^{\prime}(3.9 \mathrm{GHz})$ so the transistor has better stability at 2.4 GHz
c) we use S parameters for $\mathrm{f}=2.4 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=59.76=17.76 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.067$, U_minus $=-0.566 \mathrm{~dB}$, U_plus $=0.606 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 49

$1 . \mathrm{z}=1.005+\mathrm{j} \cdot 0.725 ; \mathrm{Y}=1 / 50 \Omega /(1.005+\mathrm{j} \cdot 0.725)=0.0131 \mathrm{~S}+\mathrm{j} \cdot(-0.0094) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=$ $(1.005+\mathrm{j} \cdot 0.725-1) /(1.005+\mathrm{j} \cdot 0.725+1)=0.118+\mathrm{j} \cdot(0.319)=0.340 \angle 69.7^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=3.30 \mathrm{~mW}=5.19 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=5.19 \mathrm{dBm}+9.3 \mathrm{~dB}=14.49 \mathrm{dBm}=28.09 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=14.49 \mathrm{dBm}-6.95 \mathrm{~dB}=7.54 \mathrm{dBm}=5.67 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=28.09 \mathrm{~mW}$ -
$5.67 \mathrm{~mW}=22.42 \mathrm{~mW}=13.51 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=13.51 \mathrm{dBm}+11.6 \mathrm{~dB}=25.11 \mathrm{dBm}=324.05 \underline{\mathrm{~mW}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.448+\mathrm{j} \cdot 0.484+1) /[1-(0.448+\mathrm{j} \cdot 0.484)]=$ $52.42 \Omega+\mathrm{j} \cdot 89.80 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $Z / 2=26.21 \Omega+j \cdot 44.90 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=0.026+\mathrm{j} \cdot 0.574=0.574 \angle 87.4^{\circ}$;
c) Complex calculus from $L 7 / 2021, S 165 \div 169,2$ solutions for the match, $|\Gamma|=0.574$, $\arg (\Gamma)=87.4^{\circ}$
$\theta_{\mathrm{S} 1}=18.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.404 ; \theta_{\mathrm{P} 1}=125.5^{\circ}$ and $\theta_{\mathrm{S} 2}=73.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.404 ; \theta_{\mathrm{P} 2}=54.5^{\circ}$, all lines with Z_{0} $=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>15.55 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.2+11.4=20.6 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.2+7.1=16.3 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.4+5.8=17.2 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.4+7.1=18.5 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.02 \mathrm{~dB}=1.265, \mathrm{~F}_{2}=1.10 \mathrm{~dB}=1.288, \mathrm{~F}_{3}=0.52 \mathrm{~dB}=1.127, \mathrm{~F}_{4}=0.85 \mathrm{~dB}=1.216, \mathrm{G}_{3}=5.8 \mathrm{~dB}=3.802, \mathrm{G}_{4}=$ $7.1 \mathrm{~dB}=5.129$;
$\mathrm{F}(4,1)=1.216+(1.265-1) / 5.129=1.268=1.03 \mathrm{~dB} ; \mathrm{F}(3,2)=1.127+(1.288-1) / 3.802=1.203=0.80 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ
2.1	$0.109+\mathrm{j} \cdot(-0.331)$	0.349	0.787	0.742
1.4	$0.444+\mathrm{j} \cdot(-0.292)$	0.531	0.170	0.190

b) $\mu(2.1 \mathrm{GHz})>\mu(1.4 \mathrm{GHz})$ so the transistor has better stability at 2.1 GHz
c) we use S parameters for $\mathrm{f}=2.1 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=77.40=18.89 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.084, \mathrm{U} _$minus $=-0.699 \mathrm{~dB}$, U_plus $=0.760 \mathrm{~dB}$ (L8/2021, S142)

Subject no. 50

1. $\mathrm{z}=1.060-\mathrm{j} \cdot 1.105 ; \mathrm{Y}=1 / 50 \Omega /(1.060-\mathrm{j} \cdot 1.105)=0.0090 \mathrm{~S}+\mathrm{j} \cdot(0.0094) \mathrm{S} ; \Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(1.060$ $-\mathrm{j} \cdot 1.105-1) /(1.060-\mathrm{j} \cdot 1.105+1)=0.246+\mathrm{j} \cdot(-0.404)=0.473 \angle-58.7^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{Pin}=3.40 \mathrm{~mW}=5.31 \mathrm{dBm} ; \mathrm{P}_{1}=\mathrm{Pin}+\mathrm{G}_{1}=5.31 \mathrm{dBm}+9.9 \mathrm{~dB}=15.21 \mathrm{dBm}=33.23 \mathrm{~mW} ; \mathrm{Pc}=\mathrm{P}_{1}-\mathrm{C}$ $=15.21 \mathrm{dBm}-4.45 \mathrm{~dB}=10.76 \mathrm{dBm}=11.93 \mathrm{~mW}$; Lossless coupler: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}-\mathrm{Pc}-\mathrm{Piz}=33.23 \mathrm{~mW}$ -
$11.93 \mathrm{~mW}=21.30 \mathrm{~mW}=13.28 \mathrm{dBm} ;$ Pout $=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{2}=13.28 \mathrm{dBm}+11.0 \mathrm{~dB}=24.28 \mathrm{dBm}=268.16 \underline{\mathbf{m W}}$

3. a) $\Gamma=(\mathrm{Z}-50 \Omega) /(\mathrm{Z}+50 \Omega) ; \mathrm{Z}=50 \Omega \cdot(1+\Gamma) /(1-\Gamma)=50 \Omega \cdot(0.036+\mathrm{j} \cdot 0.484+1) /[1-(0.036+\mathrm{j} \cdot 0.484)]=$ $32.85 \Omega+\mathrm{j} \cdot 41.60 \Omega$
b) 2 identical loads from a) in parallel connection will have an impedance $Z / 2=16.42 \Omega+j \cdot 20.80 \Omega$;
$\Gamma=(\mathrm{Z} / 2-50 \Omega) /(\mathrm{Z} / 2+50 \Omega)=-0.371+\mathrm{j} \cdot 0.429=0.567 \angle 130.8^{\circ}$;
c) Complex calculus from $L 7 / 2021, S 165 \div 169,2$ solutions for the match, $|\Gamma|=0.567, \arg (\Gamma)=130.8^{\circ}$ $\theta_{\mathrm{S} 1}=176.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-1.378 ; \theta_{\mathrm{P} 1}=126.0^{\circ}$ and $\theta_{\mathrm{S} 2}=52.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.378 ; \theta_{\mathrm{P} 2}=54.0^{\circ}$, all lines with $\mathrm{Z}_{0}=50 \Omega$
d) The shunt stub $\theta_{\mathrm{P} 1} / \theta_{\mathrm{P} 2}$ must be in parallel with the 50Ω source
4. a) From the 6 possible combinations, 2 don't offer the required gain $(1,3 ; 3,4)$.

The 4 possible combinations ($\mathrm{G}>16.90 \mathrm{~dB}$): $\mathrm{G}(1,2)=\mathrm{G}_{1}+\mathrm{G}_{2}=9.9+11.0=20.9 \mathrm{~dB} ; \mathrm{G}(1,4)=\mathrm{G}_{1}+\mathrm{G}_{4}=$ $9.9+7.2=17.1 \mathrm{~dB} ; \mathrm{G}(2,3)=\mathrm{G}_{2}+\mathrm{G}_{3}=11.0+6.0=17.0 \mathrm{~dB} ; \mathrm{G}(2,4)=\mathrm{G}_{2}+\mathrm{G}_{4}=11.0+7.2=18.2 \mathrm{~dB}$
b) Friis formula (L8/2021, S177), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{3}<\mathrm{F}_{4}<\mathrm{F}_{1}<\mathrm{F}_{2}$;

For every one of the 4 combinations of 2 devices, minimum noise factor is obtained if the first device in cascade is the one with lower noise. From the 4 possible combinations with required gain, we only have to compare $(4,1)$ and $(2,3)$ because always $\mathrm{F}_{4}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{4}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{4}<\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$ so $(4,2)$ and $(1,2)$ will always have higher noise
$\mathrm{F}_{1}=1.03 \mathrm{~dB}=1.268, \mathrm{~F}_{2}=1.11 \mathrm{~dB}=1.291, \mathrm{~F}_{3}=0.53 \mathrm{~dB}=1.130, \mathrm{~F}_{4}=0.75 \mathrm{~dB}=1.189, \mathrm{G}_{3}=6.0 \mathrm{~dB}=3.981, \mathrm{G}_{4}=$ $7.2 \mathrm{~dB}=5.248$;
$\mathrm{F}(4,1)=1.189+(1.268-1) / 5.248=1.240=0.93 \mathrm{~dB} ; \mathrm{F}(3,2)=1.130+(1.291-1) / 3.981=1.203=0.80 \mathrm{~dB} ;$ $\mathrm{F}(4,1)>\mathrm{F}(3,2) \rightarrow$ minimum noise is when we use devices $\mathbf{3 , 2}$, in that order
5. a) Must compute either μ or μ^{\prime} (as requested!) (L8/2021, S82 or 83);

$\mathrm{f}[\mathrm{GHz}]$	Δ	$\|\Delta\|$	K	μ^{\prime}
2.4	$0.213+\mathrm{j} \cdot(-0.521)$	0.562	0.890	0.907
5.2	$-0.191+\mathrm{j} \cdot(-0.406)$	0.449	0.541	0.809

b) $\mu^{\prime}(2.4 \mathrm{GHz})>\mu^{\prime}(5.2 \mathrm{GHz})$ so the transistor has better stability at 2.4 GHz
c) we use S parameters for $\mathrm{f}=2.4 \mathrm{GHz}$ and assume $\mathrm{S} 12=0 \angle 0^{\circ}$ (unilateral - L8/2021, S141)
$\mathrm{G}_{\text {TUmax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) \cdot\left|\mathrm{S}_{21}\right|^{2} /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=57.78=17.62 \mathrm{~dB}$
d) $\mathrm{U}=\left|\mathrm{S}_{11}\right| \cdot\left|\mathrm{S}_{12}\right| \cdot\left|\mathrm{S}_{21}\right| \cdot\left|\mathrm{S}_{22}\right| /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=0.154$, U_minus $=-1.247 \mathrm{~dB}$, U_plus $=1.457 \mathrm{~dB}$ (L8/2021, S142)

