Subject no. 1

1. $\mathrm{Z}=14.52+\mathrm{j} \cdot(-27.08) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.318+\mathrm{j} \cdot(-0.553)=0.638 \angle-119.9^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=1.225-\mathrm{j} \cdot 0.995 ; \mathrm{Z}=\mathrm{Z}_{0} /(1.225-\mathrm{j} \cdot 0.995)=24.592 \Omega+\mathrm{j} \cdot(19.9747) \Omega$
3. a) $\mathrm{Pin}=3.90 \mathrm{~mW}=5.911 \mathrm{dBm} ; \mathrm{Pc}=5.911 \mathrm{dBm}-4.55 \mathrm{~dB}=1.361 \mathrm{dBm}=1.3679 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=3.90 \mathrm{~mW}-1.3679 \mathrm{~mW}=2.5321 \mathrm{~mW}=4.035 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=4.035 \mathrm{dBm}+8.9 \mathrm{~dB}=12.935 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\mathrm{out}, \max }=\mathrm{P}_{\mathrm{A} 1}=12.935 \mathrm{dBm}=19.66 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $12.935 \mathrm{dBm}-0.5 \mathrm{~dB}=12.435 \mathrm{dBm}=17.518 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=1.361 \mathrm{dBm}+9.8 \mathrm{~dB}=11.161 \mathrm{dBm}=13.064 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=12.935 \mathrm{dBm}-22.7 \mathrm{~dB}=-9.765 \mathrm{dBm}=0.106 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.107+j \cdot(0.399)=0.413 \angle 75.046^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=19.7^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-0.908 ; \theta_{\mathrm{p} 1}=137.8^{\circ}$ and $\theta_{\mathrm{S} 2}=85.3^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=0.908 ; \theta_{\mathrm{p} 2}=42.2^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.2 \mathrm{~dB}+11.4 \mathrm{~dB}=$ 20.6 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.28 \mathrm{~dB}=1.343, \mathrm{~F}_{2}=1.00 \mathrm{~dB}=1.259, \mathrm{G}_{1}=9.2 \mathrm{~dB}=8.318, \mathrm{G}_{2}=11.4 \mathrm{~dB}=13.804$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.374$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.284$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.085 \mathrm{~dB}$ and $\mathrm{G}=20.6 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.640<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.186>1 ;|\Delta|=|(0.255)+\mathrm{j} \cdot(0.119)|=0.282<1$
b) $\mathrm{B}_{1}=1.028 ; \mathrm{C}_{1}=(-0.387)+\mathrm{j} \cdot(0.324) ; \Gamma_{\mathrm{S}}=(-0.631)+\mathrm{j} \cdot(-0.529)=0.823 \angle-140.1^{\circ}$
$\mathrm{B}_{2}=0.814 ; \mathrm{C}_{2}=(-0.369)+\mathrm{j} \cdot(-0.140) ; \Gamma_{\mathrm{L}}=(-0.730)+\mathrm{j} \cdot(0.277)=0.781 \angle 159.3^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=142.7^{\circ} ; \theta_{\mathrm{p} 1}=109.0^{\circ}$ or $\theta_{\mathrm{s} 2}=177.3^{\circ} ; \theta_{\mathrm{p} 2}=71.0^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=171.0^{\circ} ; \theta_{\mathrm{p} 1}=111.8^{\circ}$ or $\theta_{\mathrm{s} 2}=29.7^{\circ} ; \theta_{\mathrm{p} 2}=68.2^{\circ}$

Subject no. 2

1. $Z=39.00+\mathrm{j} \cdot(32.80) ; \Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.011+\mathrm{j} \cdot(0.365)=0.365 \angle 88.3^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=1.145-\mathrm{j} \cdot 0.955 ; \mathrm{Z}=\mathrm{Z}_{0} /(1.145-\mathrm{j} \cdot 0.955)=25.753 \Omega+\mathrm{j} \cdot(21.4795) \Omega$
3. a) $\mathrm{Pin}=1.45 \mathrm{~mW}=1.614 \mathrm{dBm} ; \operatorname{Pc}=1.614 \mathrm{dBm}-4.05 \mathrm{~dB}=-2.436 \mathrm{dBm}=0.5706 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=1.45 \mathrm{~mW}-0.5706 \mathrm{~mW}=0.8794 \mathrm{~mW}=-0.558 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=-0.558 \mathrm{dBm}+7.9 \mathrm{~dB}=7.342 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out,max }}=\mathrm{P}_{\mathrm{A} 1}=7.342 \mathrm{dBm}=5.42 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $7.342 \mathrm{dBm}-0.8 \mathrm{~dB}=6.542 \mathrm{dBm}=4.510 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-2.436 \mathrm{dBm}+10.4 \mathrm{~dB}=7.964 \mathrm{dBm}=6.257 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=7.342 \mathrm{dBm}-15.3 \mathrm{~dB}=-7.958 \mathrm{dBm}=0.160 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.294+\mathrm{j} \cdot(-0.325)=0.438 \angle-47.927^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $\mathrm{Z}_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=82.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-0.975 ; \theta_{\mathrm{p} 1}=135.7^{\circ}$ and $\theta_{\mathrm{S} 2}=146.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=0.975 ; \theta_{\mathrm{p} 2}=44.3^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $G=G_{1}+G_{2}=9.6 \mathrm{~dB}+11.8 \mathrm{~dB}=$ 21.4 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.25 \mathrm{~dB}=1.334, \mathrm{~F}_{2}=1.00 \mathrm{~dB}=1.259, \mathrm{G}_{1}=9.6 \mathrm{~dB}=9.120, \mathrm{G}_{2}=11.8 \mathrm{~dB}=15.136$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.362$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.281$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.075 \mathrm{~dB}$ and $\mathrm{G}=21.4 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.612<1 ;\left|\mathrm{S}_{22}\right|=0.556<1 ; \mathrm{K}=1.207>1 ;|\Delta|=|(0.239)+\mathrm{j} \cdot(-0.062)|=0.247<1$
b) $\mathrm{B}_{1}=1.004 ; \mathrm{C}_{1}=(-0.230)+\mathrm{j} \cdot(0.433) ; \Gamma_{\mathrm{S}}=(-0.379)+\mathrm{j} \cdot(-0.713)=0.808 \angle-118.0^{\circ}$
$\mathrm{B}_{2}=0.873 ; \mathrm{C}_{2}=(-0.421)+\mathrm{j} \cdot(-0.051) ; \Gamma_{\mathrm{L}}=(-0.776)+\mathrm{j} \cdot(0.094)=0.781 \angle 173.1^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=130.9^{\circ} ; \theta_{\mathrm{p} 1}=110.1^{\circ}$ or $\theta_{\mathrm{s} 2}=167.1^{\circ} ; \theta_{\mathrm{p} 2}=69.9^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=164.1^{\circ} ; \theta_{\mathrm{p} 1}=111.8^{\circ}$ or $\theta_{\mathrm{s} 2}=22.8^{\circ} ; \theta_{\mathrm{p} 2}=68.2^{\circ}$

Subject no. 3

1. $\mathrm{Z}=60.00+\mathrm{j} \cdot(52.98) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.262+\mathrm{j} \cdot(0.355)=0.442 \angle 53.6^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=1.040-\mathrm{j} \cdot 0.825 ; \mathrm{Z}=\mathrm{Z}_{0} /(1.040-\mathrm{j} \cdot 0.825)=29.508 \Omega+\mathrm{j} \cdot(23.4079) \Omega$
3. a) $\mathrm{Pin}=1.85 \mathrm{~mW}=2.672 \mathrm{dBm} ; \mathrm{Pc}=2.672 \mathrm{dBm}-4.50 \mathrm{~dB}=-1.828 \mathrm{dBm}=0.6564 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=1.85 \mathrm{~mW}-0.6564 \mathrm{~mW}=1.1936 \mathrm{~mW}=0.769 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=0.769 \mathrm{dBm}+6.9 \mathrm{~dB}=7.669 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out,max }}=\mathrm{P}_{\mathrm{A} 1}=7.669 \mathrm{dBm}=5.85 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $7.669 \mathrm{dBm}-2.5 \mathrm{~dB}=5.169 \mathrm{dBm}=3.287 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-1.828 \mathrm{dBm}+9.8 \mathrm{~dB}=7.972 \mathrm{dBm}=6.269 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=7.669 \mathrm{dBm}-16.3 \mathrm{~dB}=-8.631 \mathrm{dBm}=0.137 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.251+\mathrm{j} \cdot(-0.323)=0.409 \angle-52.134^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $\mathrm{Z}_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=83.1^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-0.896 ; \theta_{\mathrm{p} 1}=138.1^{\circ}$ and $\theta_{\mathrm{S} 2}=149.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.896 ; \theta_{\mathrm{p} 2}=41.9^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.4 \mathrm{~dB}+11.6 \mathrm{~dB}=$ 21.0 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.23 \mathrm{~dB}=1.327, \mathrm{~F}_{2}=0.93 \mathrm{~dB}=1.239, \mathrm{G}_{1}=9.4 \mathrm{~dB}=8.710, \mathrm{G}_{2}=11.6 \mathrm{~dB}=14.454$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.355$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.261$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.009 \mathrm{~dB}$ and $\mathrm{G}=21.0 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|S_{11}\right|=0.615<1 ;\left|\mathrm{S}_{22}\right|=0.555<1 ; \mathrm{K}=1.211>1 ;|\Delta|=|(0.243)+\mathrm{j} \cdot(-0.055)|=0.249<1$
b) $\mathrm{B}_{1}=1.008 ; \mathrm{C}_{1}=(-0.241)+\mathrm{j} \cdot(0.430) ; \Gamma_{\mathrm{S}}=(-0.395)+\mathrm{j} \cdot(-0.705)=0.808 \angle-119.3^{\circ}$
$\mathrm{B}_{2}=0.868 ; \mathrm{C}_{2}=(-0.417)+\mathrm{j} \cdot(-0.057) ; \Gamma_{\mathrm{L}}=(-0.772)+\mathrm{j} \cdot(0.105)=0.780 \angle 172.2^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=131.6^{\circ} ; \theta_{\mathrm{p} 1}=110.0^{\circ}$ or $\theta_{\mathrm{s} 2}=167.7^{\circ} ; \theta_{\mathrm{p} 2}=70.0^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=164.5^{\circ} ; \theta_{\mathrm{p} 1}=111.9^{\circ}$ or $\theta_{\mathrm{s} 2}=23.3^{\circ} ; \theta_{\mathrm{p} 2}=68.1^{\circ}$

Subject no. 4

1. $Z=28.56+\mathrm{j} \cdot(13.56) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.236+\mathrm{j} \cdot(0.213)=0.318 \angle 137.9^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.925+\mathrm{j} \cdot 0.925 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.925+\mathrm{j} \cdot 0.925)=27.027 \Omega+\mathrm{j} \cdot(-27.0270) \Omega$
3. a) $\mathrm{Pin}=2.65 \mathrm{~mW}=4.232 \mathrm{dBm} ; \operatorname{Pc}=4.232 \mathrm{dBm}-4.95 \mathrm{~dB}=-0.718 \mathrm{dBm}=0.8477 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.65 \mathrm{~mW}-0.8477 \mathrm{~mW}=1.8023 \mathrm{~mW}=2.558 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=2.558 \mathrm{dBm}+6.9 \mathrm{~dB}=9.458 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=9.458 \mathrm{dBm}=8.83 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $9.458 \mathrm{dBm}-2.7 \mathrm{~dB}=6.758 \mathrm{dBm}=4.741 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-0.718 \mathrm{dBm}+11.0 \mathrm{~dB}=10.282 \mathrm{dBm}=10.672 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=9.458 \mathrm{dBm}-24.1 \mathrm{~dB}=-14.642 \mathrm{dBm}=0.034 \mathrm{~mW}$
4. $\Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.223+\mathrm{j} \cdot(0.336)=0.403 \angle 56.351^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=28.7^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-0.881 ; \theta_{\mathrm{p} 1}=138.6^{\circ}$ and $\theta_{\mathrm{S} 2}=94.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=0.881 ; \theta_{\mathrm{p} 2}=41.4^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.5 \mathrm{~dB}+10.4 \mathrm{~dB}=$ 19.9 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.25 \mathrm{~dB}=1.334, \mathrm{~F}_{2}=1.05 \mathrm{~dB}=1.274, \mathrm{G}_{1}=9.5 \mathrm{~dB}=8.913, \mathrm{G}_{2}=10.4 \mathrm{~dB}=10.965$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.364$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.304$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.153 \mathrm{~dB}$ and $\mathrm{G}=19.9 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.631<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.227>1 ;|\Delta|=|(0.258)+\mathrm{j} \cdot(-0.008)|=0.258<1$
b) $\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.303)+\mathrm{j} \cdot(0.402) ; \Gamma_{\mathrm{S}}=(-0.488)+\mathrm{j} \cdot(-0.649)=0.811 \angle-126.9^{\circ}$
$\mathrm{B}_{2}=0.838 ; \mathrm{C}_{2}=(-0.395)+\mathrm{j} \cdot(-0.090) ; \Gamma_{\mathrm{L}}=(-0.753)+\mathrm{j} \cdot(0.171)=0.772 \angle 167.2^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=135.6^{\circ} ; \theta_{\mathrm{p} 1}=109.8^{\circ}$ or $\theta_{\mathrm{s} 2}=171.4^{\circ} ; \theta_{\mathrm{p} 2}=70.2^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=166.7^{\circ} ; \theta_{\mathrm{p} 1}=112.4^{\circ}$ or $\theta_{\mathrm{s} 2}=26.1^{\circ} ; \theta_{\mathrm{p} 2}=67.6^{\circ}$

Subject no. 5

1. $\mathrm{Z}=16.55+\mathrm{j} \cdot(-30.56) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.241+\mathrm{j} \cdot(-0.570)=0.619 \angle-112.9^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=1.170-\mathrm{j} \cdot 1.105 ; \mathrm{Z}=\mathrm{Z}_{0} /(1.170-\mathrm{j} \cdot 1.105)=22.588 \Omega+\mathrm{j} \cdot(21.3327) \Omega$
3. a) $\operatorname{Pin}=2.50 \mathrm{~mW}=3.979 \mathrm{dBm} ; \operatorname{Pc}=3.979 \mathrm{dBm}-6.10 \mathrm{~dB}=-2.121 \mathrm{dBm}=0.6137 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.50 \mathrm{~mW}-0.6137 \mathrm{~mW}=1.8863 \mathrm{~mW}=2.756 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=2.756 \mathrm{dBm}+8.9 \mathrm{~dB}=11.656 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out,max }}=\mathrm{P}_{\mathrm{A} 1}=11.656 \mathrm{dBm}=14.64 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $11.656 \mathrm{dBm}-1.3 \mathrm{~dB}=10.356 \mathrm{dBm}=10.855 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-2.121 \mathrm{dBm}+10.9 \mathrm{~dB}=8.779 \mathrm{dBm}=7.550 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=11.656 \mathrm{dBm}-19.4 \mathrm{~dB}=-7.744 \mathrm{dBm}=0.168 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.341+j \cdot(-0.386)=0.515 \angle-48.588^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=84.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.203 ; \theta_{\mathrm{p} 1}=129.7^{\circ}$ and $\theta_{\mathrm{S} 2}=143.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.203 ; \theta_{\mathrm{p} 2}=50.3^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.6 \mathrm{~dB}+11.4 \mathrm{~dB}=$ 21.0 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.24 \mathrm{~dB}=1.330, \mathrm{~F}_{2}=0.92 \mathrm{~dB}=1.236, \mathrm{G}_{1}=9.6 \mathrm{~dB}=9.120, \mathrm{G}_{2}=11.4 \mathrm{~dB}=13.804$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.356$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.260$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.003 \mathrm{~dB}$ and $\mathrm{G}=21.0 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.600<1 ;\left|\mathrm{S}_{22}\right|=0.560<1 ; \mathrm{K}=1.192>1 ;|\Delta|=|(0.225)+\mathrm{j} \cdot(-0.088)|=0.242<1$
b) $\mathrm{B}_{1}=0.988 ; \mathrm{C}_{1}=(-0.187)+\mathrm{j} \cdot(0.445) ; \Gamma_{\mathrm{S}}=(-0.313)+\mathrm{j} \cdot(-0.743)=0.806 \angle-112.8^{\circ}$
$B_{2}=0.895 ; \mathrm{C}_{2}=(-0.434)+\mathrm{j} \cdot(-0.026) ; \Gamma_{\mathrm{L}}=(-0.787)+\mathrm{j} \cdot(0.047)=0.788 \angle 176.6^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=128.3^{\circ} ; \theta_{\mathrm{p} 1}=110.1^{\circ}$ or $\theta_{\mathrm{s} 2}=164.5^{\circ} ; \theta_{\mathrm{p} 2}=69.9^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=162.7^{\circ} ; \theta_{\mathrm{p} 1}=111.3^{\circ}$ or $\theta_{\mathrm{s} 2}=20.7^{\circ} ; \theta_{\mathrm{p} 2}=68.7^{\circ}$

Subject no. 6

1. $\mathrm{Z}=21.02+\mathrm{j} \cdot(18.89) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.315+\mathrm{j} \cdot(0.350)=0.471 \angle 132.0^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.910-\mathrm{j} \cdot 1.225 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.910-\mathrm{j} \cdot 1.225)=19.539 \Omega+\mathrm{j} \cdot(26.3019) \Omega$
3. a) $\mathrm{Pin}=3.50 \mathrm{~mW}=5.441 \mathrm{dBm} ; \operatorname{Pc}=5.441 \mathrm{dBm}-6.55 \mathrm{~dB}=-1.109 \mathrm{dBm}=0.7746 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=3.50 \mathrm{~mW}-0.7746 \mathrm{~mW}=2.7254 \mathrm{~mW}=4.354 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=4.354 \mathrm{dBm}+7.4 \mathrm{~dB}=11.754 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=11.754 \mathrm{dBm}=14.98 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $11.754 \mathrm{dBm}-2.4 \mathrm{~dB}=9.354 \mathrm{dBm}=8.619 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-1.109 \mathrm{dBm}+10.9 \mathrm{~dB}=9.791 \mathrm{dBm}=9.529 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=11.754 \mathrm{dBm}-22.1 \mathrm{~dB}=-10.346 \mathrm{dBm}=0.092 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.179+j \cdot(-0.325)=0.371 \angle-61.153^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $\mathrm{Z}_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=86.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-0.799 ; \theta_{\mathrm{p} 1}=141.4^{\circ}$ and $\theta_{\mathrm{S} 2}=154.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.799 ; \theta_{\mathrm{p} 2}=38.6^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $G=G_{1}+G_{2}=8.8 \mathrm{~dB}+11.1 \mathrm{~dB}=$ 19.9 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.27 \mathrm{~dB}=1.340, \mathrm{~F}_{2}=1.03 \mathrm{~dB}=1.268, \mathrm{G}_{1}=8.8 \mathrm{~dB}=7.586, \mathrm{G}_{2}=11.1 \mathrm{~dB}=12.882$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.375$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.294$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.119 \mathrm{~dB}$ and $\mathrm{G}=19.9 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.650<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.099>1 ;|\Delta|=|(-0.133)+\mathrm{j} \cdot(0.247)|=0.281<1$
b) $\mathrm{B}_{1}=1.073 ; \mathrm{C}_{1}=(-0.526)+\mathrm{j} \cdot(-0.072) ; \Gamma_{\mathrm{S}}=(-0.853)+\mathrm{j} \cdot(0.117)=0.861 \angle 172.2^{\circ}$
$\mathrm{B}_{2}=0.769 ; \mathrm{C}_{2}=(-0.208)+\mathrm{j} \cdot(-0.313) ; \Gamma_{\mathrm{L}}=(-0.448)+\mathrm{j} \cdot(0.675)=0.810 \angle 123.6^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=168.6^{\circ} ; \theta_{\mathrm{p} 1}=106.5^{\circ}$ or $\theta_{\mathrm{s} 2}=19.2^{\circ} ; \theta_{\mathrm{p} 2}=73.5^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=10.3^{\circ} ; \theta_{\mathrm{p} 1}=109.9^{\circ}$ or $\theta_{\mathrm{s} 2}=46.2^{\circ} ; \theta_{\mathrm{p} 2}=70.1^{\circ}$

Subject no. 7

1. $Z=26.08+\mathrm{j} \cdot(11.33) ; \Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=-0.286+j \cdot(0.191)=0.344 \angle 146.2^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.750-\mathrm{j} \cdot 0.725 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.750-\mathrm{j} \cdot 0.725)=34.463 \Omega+\mathrm{j} \cdot(33.3142) \Omega$
3. a) $\operatorname{Pin}=3.45 \mathrm{~mW}=5.378 \mathrm{dBm} ; \operatorname{Pc}=5.378 \mathrm{dBm}-4.05 \mathrm{~dB}=1.328 \mathrm{dBm}=1.3577 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=3.45 \mathrm{~mW}-1.3577 \mathrm{~mW}=2.0923 \mathrm{~mW}=3.206 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=3.206 \mathrm{dBm}+8.1 \mathrm{~dB}=11.306 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=11.306 \mathrm{dBm}=13.51 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $11.306 \mathrm{dBm}-1.6 \mathrm{~dB}=9.706 \mathrm{dBm}=9.346 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=1.328 \mathrm{dBm}+11.5 \mathrm{~dB}=12.828 \mathrm{dBm}=19.179 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=11.306 \mathrm{dBm}-20.2 \mathrm{~dB}=-8.894 \mathrm{dBm}=0.129 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.054+j \cdot(-0.448)=0.451 \angle-83.061^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=99.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-1.010 ; \theta_{\mathrm{p} 1}=134.7^{\circ}$ and $\theta_{\mathrm{S} 2}=163.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.010 ; \theta_{\mathrm{p} 2}=45.3^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.7 \mathrm{~dB}+11.6 \mathrm{~dB}=$ 21.3 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.10 \mathrm{~dB}=1.288, \mathrm{~F}_{2}=0.95 \mathrm{~dB}=1.245, \mathrm{G}_{1}=9.7 \mathrm{~dB}=9.333, \mathrm{G}_{2}=11.6 \mathrm{~dB}=14.454$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.314$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.264$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.019 \mathrm{~dB}$ and $\mathrm{G}=21.3 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|S_{11}\right|=0.638<1 ;\left|S_{22}\right|=0.550<1 ; \mathrm{K}=1.197>1 ;|\Delta|=|(0.265)+\mathrm{j} \cdot(0.072)|=0.274<1$
b) $\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.358)+\mathrm{j} \cdot(0.355) ; \Gamma_{\mathrm{S}}=(-0.583)+\mathrm{j} \cdot(-0.578)=0.821 \angle-135.2^{\circ}$
$B_{2}=0.820 ; C_{2}=(-0.379)+\mathrm{j} \cdot(-0.120) ; \Gamma_{L}=(-0.742)+\mathrm{j} \cdot(0.236)=0.779 \angle 162.4^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=140.2^{\circ} ; \theta_{\mathrm{p} 1}=109.2^{\circ} \underline{\underline{\text { or }}} \theta_{\mathrm{s} 2}=175.0^{\circ} ; \theta_{\mathrm{p} 2}=70.8^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=169.4^{\circ} ; \theta_{\mathrm{p} 1}=111.9^{\circ}$ or $\theta_{\mathrm{s} 2}=28.2^{\circ} ; \theta_{\mathrm{p} 2}=68.1^{\circ}$

Subject no. 8

1. $\mathrm{Z}=28.60+\mathrm{j} \cdot(-26.42) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.143+\mathrm{j} \cdot(-0.384)=0.410 \angle-110.4^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=1.165-\mathrm{j} \cdot 0.840 ; \mathrm{Z}=\mathrm{Z}_{0} /(1.165-\mathrm{j} \cdot 0.840)=28.238 \Omega+\mathrm{j} \cdot(20.3604) \Omega$
3. a) $\mathrm{Pin}=3.30 \mathrm{~mW}=5.185 \mathrm{dBm} ; \mathrm{Pc}=5.185 \mathrm{dBm}-6.05 \mathrm{~dB}=-0.865 \mathrm{dBm}=0.8194 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=3.30 \mathrm{~mW}-0.8194 \mathrm{~mW}=2.4806 \mathrm{~mW}=3.946 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=3.946 \mathrm{dBm}+9.9 \mathrm{~dB}=13.846 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=13.846 \mathrm{dBm}=24.24 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $13.846 \mathrm{dBm}-0.8 \mathrm{~dB}=13.046 \mathrm{dBm}=20.163 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-0.865 \mathrm{dBm}+11.3 \mathrm{~dB}=10.435 \mathrm{dBm}=11.054 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=13.846 \mathrm{dBm}-24.3 \mathrm{~dB}=-10.454 \mathrm{dBm}=0.090 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.204+\mathrm{j} \cdot(-0.533)=0.571 \angle-69.067^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=96.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-1.391 ; \theta_{\mathrm{p} 1}=125.7^{\circ}$ and $\theta_{\mathrm{S} 2}=152.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.391 ; \theta_{\mathrm{p} 2}=54.3^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=8.5 \mathrm{~dB}+11.3 \mathrm{~dB}=$ 19.8 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.12 \mathrm{~dB}=1.294, \mathrm{~F}_{2}=0.91 \mathrm{~dB}=1.233, \mathrm{G}_{1}=8.5 \mathrm{~dB}=7.079, \mathrm{G}_{2}=11.3 \mathrm{~dB}=13.490$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.327$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.255$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=0.986 \mathrm{~dB}$ and $\mathrm{G}=19.8 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|S_{11}\right|=0.602<1 ;\left|S_{22}\right|=0.520<1 ; K=1.180>1 ;|\Delta|=|(-0.026)+\mathrm{j} \cdot(0.260)|=0.261<1$
b) $\mathrm{B}_{1}=1.024 ; \mathrm{C}_{1}=(-0.481)+\mathrm{j} \cdot(0.131) ; \Gamma_{\mathrm{S}}=(-0.767)+\mathrm{j} \cdot(-0.209)=0.795 \angle-164.8^{\circ}$
$\mathrm{B}_{2}=0.840 ; \mathrm{C}_{2}=(-0.247)+\mathrm{j} \cdot(-0.320) ; \Gamma_{\mathrm{L}}=(-0.461)+\mathrm{j} \cdot(0.597)=0.754 \angle 127.6^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=153.7^{\circ} ; \theta_{\mathrm{p} 1}=110.9^{\circ}$ or $\theta_{\mathrm{s} 2}=11.1^{\circ} ; \theta_{\mathrm{p} 2}=69.1^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=5.6^{\circ} ; \theta_{\mathrm{p} 1}=113.5^{\circ}$ or $\theta_{\mathrm{s} 2}=46.7^{\circ} ; \theta_{\mathrm{p} 2}=66.5^{\circ}$

Subject no. 9

1. $\mathrm{Z}=15.56+\mathrm{j} \cdot(-29.63) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.267+\mathrm{j} \cdot(-0.573)=0.632 \angle-115.0^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.730+\mathrm{j} \cdot 0.865 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.730+\mathrm{j} \cdot 0.865)=28.491 \Omega+\mathrm{j} \cdot(-33.7594) \Omega$
3. a) $\mathrm{Pin}=3.65 \mathrm{~mW}=5.623 \mathrm{dBm} ; \mathrm{Pc}=5.623 \mathrm{dBm}-6.30 \mathrm{~dB}=-0.677 \mathrm{dBm}=0.8556 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=3.65 \mathrm{~mW}-0.8556 \mathrm{~mW}=2.7944 \mathrm{~mW}=4.463 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=4.463 \mathrm{dBm}+7.4 \mathrm{~dB}=11.863 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=11.863 \mathrm{dBm}=15.36 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $11.863 \mathrm{dBm}-1.2 \mathrm{~dB}=10.663 \mathrm{dBm}=11.649 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-0.677 \mathrm{dBm}+11.0 \mathrm{~dB}=10.323 \mathrm{dBm}=10.772 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=11.863 \mathrm{dBm}-18.1 \mathrm{~dB}=-6.237 \mathrm{dBm}=0.238 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.016+j \cdot(0.419)=0.419 \angle 87.879^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=13.5^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-0.924 ; \theta_{\mathrm{p} 1}=137.3^{\circ}$ and $\theta_{\mathrm{S} 2}=78.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=0.924 ; \theta_{\mathrm{p} 2}=42.7^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=8.4 \mathrm{~dB}+11.4 \mathrm{~dB}=$ 19.8 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.22 \mathrm{~dB}=1.324, \mathrm{~F}_{2}=0.97 \mathrm{~dB}=1.250, \mathrm{G}_{1}=8.4 \mathrm{~dB}=6.918, \mathrm{G}_{2}=11.4 \mathrm{~dB}=13.804$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.361$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.274$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.051 \mathrm{~dB}$ and $\mathrm{G}=19.8 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|S_{11}\right|=0.632<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.106>1 ;|\Delta|=|(-0.111)+\mathrm{j} \cdot(0.257)|=0.280<1$
b) $\mathrm{B}_{1}=1.051 ; \mathrm{C}_{1}=(-0.518)+\mathrm{j} \cdot(0.008) ; \Gamma_{\mathrm{S}}=(-0.845)+\mathrm{j} \cdot(-0.013)=0.845 \angle-179.1^{\circ}$
$\mathrm{B}_{2}=0.792 ; \mathrm{C}_{2}=(-0.216)+\mathrm{j} \cdot(-0.321) ; \Gamma_{\mathrm{L}}=(-0.446)+\mathrm{j} \cdot(0.663)=0.799 \angle 123.9^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=163.4^{\circ} ; \theta_{\mathrm{p} 1}=107.5^{\circ}$ or $\theta_{\mathrm{s} 2}=15.7^{\circ} ; \theta_{\mathrm{p} 2}=72.5^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=9.6^{\circ} ; \theta_{\mathrm{p} 1}=110.6^{\circ}$ or $\theta_{\mathrm{s} 2}=46.5^{\circ} ; \theta_{\mathrm{p} 2}=69.4^{\circ}$

Subject no. 10

1. $\mathrm{Z}=27.89+\mathrm{j} \cdot(-21.20) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.195+\mathrm{j} \cdot(-0.325)=0.379 \angle-121.0^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.950+\mathrm{j} \cdot 1.100 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.950+\mathrm{j} \cdot 1.100)=22.485 \Omega+\mathrm{j} \cdot(-26.0355) \Omega$
3. a) $\operatorname{Pin}=1.50 \mathrm{~mW}=1.761 \mathrm{dBm} ; \mathrm{Pc}=1.761 \mathrm{dBm}-4.40 \mathrm{~dB}=-2.639 \mathrm{dBm}=0.5446 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=1.50 \mathrm{~mW}-0.5446 \mathrm{~mW}=0.9554 \mathrm{~mW}=-0.198 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=-0.198 \mathrm{dBm}+9.3 \mathrm{~dB}=9.102 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, } \max }=\mathrm{P}_{\mathrm{A} 1}=9.102 \mathrm{dBm}=8.13 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $9.102 \mathrm{dBm}-1.0 \mathrm{~dB}=8.102 \mathrm{dBm}=6.459 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-2.639 \mathrm{dBm}+10.2 \mathrm{~dB}=7.561 \mathrm{dBm}=5.703 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=9.102 \mathrm{dBm}-19.7 \mathrm{~dB}=-10.598 \mathrm{dBm}=0.087 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.218+\mathrm{j} \cdot(-0.461)=0.510 \angle-64.713^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=92.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.185 ; \theta_{\mathrm{p} 1}=130.2^{\circ}$ and $\theta_{\mathrm{S} 2}=152.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.185 ; \theta_{\mathrm{p} 2}=49.8^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=8.1 \mathrm{~dB}+10.3 \mathrm{~dB}=$ 18.4 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.16 \mathrm{~dB}=1.306, \mathrm{~F}_{2}=1.04 \mathrm{~dB}=1.271, \mathrm{G}_{1}=8.1 \mathrm{~dB}=6.457, \mathrm{G}_{2}=10.3 \mathrm{~dB}=10.715$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.348$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.299$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.137 \mathrm{~dB}$ and $\mathrm{G}=18.4 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.640<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.189>1 ;|\Delta|=|(0.262)+\mathrm{j} \cdot(0.095)|=0.279<1$
b) $\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.373)+\mathrm{j} \cdot(0.340) ; \Gamma_{\mathrm{S}}=(-0.608)+\mathrm{j} \cdot(-0.555)=0.823 \angle-137.6^{\circ}$
$\mathrm{B}_{2}=0.815 ; \mathrm{C}_{2}=(-0.374)+\mathrm{j} \cdot(-0.129) ; \Gamma_{\mathrm{L}}=(-0.738)+\mathrm{j} \cdot(0.254)=0.780 \angle 161.0^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=141.5^{\circ} ; \theta_{\mathrm{p} 1}=109.0^{\circ}$ or $\theta_{\mathrm{s} 2}=176.1^{\circ} ; \theta_{\mathrm{p} 2}=71.0^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=170.1^{\circ} ; \theta_{\mathrm{p} 1}=111.8^{\circ}$ or $\theta_{\mathrm{s} 2}=28.9^{\circ} ; \theta_{\mathrm{p} 2}=68.2^{\circ}$

Subject no. 11

1. $Z=18.85+j \cdot(19.97) ; \Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=-0.340+j \cdot(0.389)=0.516 \angle 131.2^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=1.225+\mathrm{j} \cdot 1.200 ; \mathrm{Z}=\mathrm{Z}_{0} /(1.225+\mathrm{j} \cdot 1.200)=20.829 \Omega+\mathrm{j} \cdot(-20.4038) \Omega$
3. a) $\mathrm{Pin}=2.65 \mathrm{~mW}=4.232 \mathrm{dBm} ; \operatorname{Pc}=4.232 \mathrm{dBm}-4.80 \mathrm{~dB}=-0.568 \mathrm{dBm}=0.8775 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.65 \mathrm{~mW}-0.8775 \mathrm{~mW}=1.7725 \mathrm{~mW}=2.486 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=2.486 \mathrm{dBm}+7.4 \mathrm{~dB}=9.886 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=9.886 \mathrm{dBm}=9.74 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $9.886 \mathrm{dBm}-2.3 \mathrm{~dB}=7.586 \mathrm{dBm}=5.736 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-0.568 \mathrm{dBm}+8.0 \mathrm{~dB}=7.432 \mathrm{dBm}=5.537 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=9.886 \mathrm{dBm}-17.3 \mathrm{~dB}=-7.414 \mathrm{dBm}=0.181 \mathrm{~mW}$
4. $\Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.205+\mathrm{j} \cdot(0.415)=0.463 \angle 63.756^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=26.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.045 ; \theta_{\mathrm{p} 1}=133.7^{\circ}$ and $\theta_{\mathrm{S} 2}=89.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.045 ; \theta_{\mathrm{p} 2}=46.3^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.1 \mathrm{~dB}+10.7 \mathrm{~dB}=$ 19.8 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.29 \mathrm{~dB}=1.346, \mathrm{~F}_{2}=1.04 \mathrm{~dB}=1.271, \mathrm{G}_{1}=9.1 \mathrm{~dB}=8.128, \mathrm{G}_{2}=10.7 \mathrm{~dB}=11.749$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.379$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.300$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.139 \mathrm{~dB}$ and $\mathrm{G}=19.8 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.644<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.101>1 ;|\Delta|=|(-0.126)+\mathrm{j} \cdot(0.250)|=0.280<1$
b) $\mathrm{B}_{1}=1.066 ; \mathrm{C}_{1}=(-0.525)+\mathrm{j} \cdot(-0.045) ; \Gamma_{\mathrm{S}}=(-0.853)+\mathrm{j} \cdot(0.073)=0.856 \angle 175.1^{\circ}$
$B_{2}=0.777 ; C_{2}=(-0.211)+\mathrm{j} \cdot(-0.316) ; \Gamma_{L}=(-0.447)+\mathrm{j} \cdot(0.671)=0.807 \angle 123.7^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=166.9^{\circ} ; \theta_{\mathrm{p} 1}=106.8^{\circ}$ or $\theta_{\mathrm{s} 2}=18.0^{\circ} ; \theta_{\mathrm{p} 2}=73.2^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=10.0^{\circ} ; \theta_{\mathrm{p} 1}=110.1^{\circ}$ or $\theta_{\mathrm{s} 2}=46.3^{\circ} ; \theta_{\mathrm{p} 2}=69.9^{\circ}$

Subject no. 12

1. $\mathrm{Z}=21.29+\mathrm{j} \cdot(-17.08) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.327+\mathrm{j} \cdot(-0.318)=0.456 \angle-135.8^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=1.015-\mathrm{j} \cdot 0.710 ; \mathrm{Z}=\mathrm{Z}_{0} /(1.015-\mathrm{j} \cdot 0.710)=33.076 \Omega+\mathrm{j} \cdot(23.1372) \Omega$
3. a) $\operatorname{Pin}=2.25 \mathrm{~mW}=3.522 \mathrm{dBm} ; \mathrm{Pc}=3.522 \mathrm{dBm}-6.65 \mathrm{~dB}=-3.128 \mathrm{dBm}=0.4866 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.25 \mathrm{~mW}-0.4866 \mathrm{~mW}=1.7634 \mathrm{~mW}=2.463 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=2.463 \mathrm{dBm}+9.6 \mathrm{~dB}=12.063 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=12.063 \mathrm{dBm}=16.08 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $12.063 \mathrm{dBm}-1.6 \mathrm{~dB}=10.463 \mathrm{dBm}=11.126 \mathrm{~mW}$
b) $P_{\text {meas }}=P_{C}+G_{2}=-3.128 \mathrm{dBm}+8.2 \mathrm{~dB}=5.072 \mathrm{dBm}=3.215 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=12.063 \mathrm{dBm}-15.1 \mathrm{~dB}=-3.037 \mathrm{dBm}=0.497 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.251+j \cdot(0.394)=0.467 \angle 57.564^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=30.1^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.057 ; \theta_{\mathrm{p} 1}=133.4^{\circ}$ and $\theta_{\mathrm{S} 2}=92.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.057 ; \theta_{\mathrm{p} 2}=46.6^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.2 \mathrm{~dB}+10.6 \mathrm{~dB}=$ 19.8 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.16 \mathrm{~dB}=1.306, \mathrm{~F}_{2}=1.07 \mathrm{~dB}=1.279, \mathrm{G}_{1}=9.2 \mathrm{~dB}=8.318, \mathrm{G}_{2}=10.6 \mathrm{~dB}=11.482$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.340$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.306$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.160 \mathrm{~dB}$ and $\mathrm{G}=19.8 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.638<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.103>1 ;|\Delta|=|(-0.118)+\mathrm{j} \cdot(0.254)|=0.280<1$
b) $\mathrm{B}_{1}=1.058 ; \mathrm{C}_{1}=(-0.522)+\mathrm{j} \cdot(-0.018) ; \Gamma_{\mathrm{S}}=(-0.850)+\mathrm{j} \cdot(0.030)=0.851 \angle 178.0^{\circ}$
$\mathrm{B}_{2}=0.785 ; \mathrm{C}_{2}=(-0.213)+\mathrm{j} \cdot(-0.318) ; \Gamma_{\mathrm{L}}=(-0.447)+\mathrm{j} \cdot(0.667)=0.803 \angle 123.8^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=165.2^{\circ} ; \theta_{\mathrm{p} 1}=107.2^{\circ} \underline{\text { or }} \theta_{\mathrm{s} 2}=16.9^{\circ} ; \theta_{\mathrm{p} 2}=72.8^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=9.8^{\circ} ; \theta_{\mathrm{p} 1}=110.4^{\circ}$ or $\theta_{\mathrm{s} 2}=46.4^{\circ} ; \theta_{\mathrm{p} 2}=69.6^{\circ}$

Subject no. 13

1. $\mathrm{Z}=25.13+\mathrm{j} \cdot(-25.00) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.198+\mathrm{j} \cdot(-0.399)=0.445 \angle-116.4^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.910-\mathrm{j} \cdot 0.810 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.910-\mathrm{j} \cdot 0.810)=30.656 \Omega+\mathrm{j} \cdot(27.2874) \Omega$
3. a) $\mathrm{Pin}=1.85 \mathrm{~mW}=2.672 \mathrm{dBm} ; \mathrm{Pc}=2.672 \mathrm{dBm}-6.45 \mathrm{~dB}=-3.778 \mathrm{dBm}=0.4190 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=1.85 \mathrm{~mW}-0.4190 \mathrm{~mW}=1.4310 \mathrm{~mW}=1.557 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=1.557 \mathrm{dBm}+6.5 \mathrm{~dB}=8.057 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out,max }}=\mathrm{P}_{\mathrm{A} 1}=8.057 \mathrm{dBm}=6.39 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $8.057 \mathrm{dBm}-1.1 \mathrm{~dB}=6.957 \mathrm{dBm}=4.962 \mathrm{~mW}$
b) $P_{\text {meas }}=P_{C}+G_{2}=-3.778 \mathrm{dBm}+9.9 \mathrm{~dB}=6.122 \mathrm{dBm}=4.094 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=8.057 \mathrm{dBm}-16.4 \mathrm{~dB}=-8.343 \mathrm{dBm}=0.146 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.185+j \cdot(-0.301)=0.353 \angle-58.386^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $\mathrm{Z}_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=84.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-0.756 ; \theta_{\mathrm{p} 1}=142.9^{\circ}$ and $\theta_{\mathrm{S} 2}=153.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.756 ; \theta_{\mathrm{p} 2}=37.1^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=8.0 \mathrm{~dB}+10.8 \mathrm{~dB}=$ 18.8 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.18 \mathrm{~dB}=1.312, \mathrm{~F}_{2}=0.98 \mathrm{~dB}=1.253, \mathrm{G}_{1}=8.0 \mathrm{~dB}=6.310, \mathrm{G}_{2}=10.8 \mathrm{~dB}=12.023$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.352$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.279$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.069 \mathrm{~dB}$ and $\mathrm{G}=18.8 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.640<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.182>1 ;|\Delta|=|(0.246)+\mathrm{j} \cdot(0.141)|=0.284<1$
b) $\mathrm{B}_{1}=1.026 ; \mathrm{C}_{1}=(-0.400)+\mathrm{j} \cdot(0.307) ; \Gamma_{\mathrm{S}}=(-0.653)+\mathrm{j} \cdot(-0.502)=0.824 \angle-142.5^{\circ}$
$\mathrm{B}_{2}=0.812 ; \mathrm{C}_{2}=(-0.364)+\mathrm{j} \cdot(-0.151) ; \Gamma_{\mathrm{L}}=(-0.722)+\mathrm{j} \cdot(0.299)=0.781 \angle 157.5^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=144.0^{\circ} ; \theta_{\mathrm{p} 1}=109.0^{\circ}$ or $\theta_{\mathrm{s} 2}=178.5^{\circ} ; \theta_{\mathrm{p} 2}=71.0^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=171.9^{\circ} ; \theta_{\mathrm{p} 1}=111.8^{\circ}$ or $\theta_{\mathrm{s} 2}=30.6^{\circ} ; \theta_{\mathrm{p} 2}=68.2^{\circ}$

Subject no. 14

1. $Z=52.00+\mathrm{j} \cdot(33.46) ; \Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.115+\mathrm{j} \cdot(0.290)=0.312 \angle 68.4^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=1.040+\mathrm{j} \cdot 1.085 ; \mathrm{Z}=\mathrm{Z}_{0} /(1.040+\mathrm{j} \cdot 1.085)=23.021 \Omega+\mathrm{j} \cdot(-24.0169) \Omega$
3. a) $\mathrm{Pin}=2.30 \mathrm{~mW}=3.617 \mathrm{dBm} ; \operatorname{Pc}=3.617 \mathrm{dBm}-4.10 \mathrm{~dB}=-0.483 \mathrm{dBm}=0.8948 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.30 \mathrm{~mW}-0.8948 \mathrm{~mW}=1.4052 \mathrm{~mW}=1.477 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=1.477 \mathrm{dBm}+7.9 \mathrm{~dB}=9.377 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=9.377 \mathrm{dBm}=8.66 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $9.377 \mathrm{dBm}-2.2 \mathrm{~dB}=7.177 \mathrm{dBm}=5.221 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-0.483 \mathrm{dBm}+8.2 \mathrm{~dB}=7.717 \mathrm{dBm}=5.912 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=9.377 \mathrm{dBm}-15.3 \mathrm{~dB}=-5.923 \mathrm{dBm}=0.256 \mathrm{~mW}$
4. $\Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.289+\mathrm{j} \cdot(-0.349)=0.453 \angle-50.331^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=83.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-1.016 ; \theta_{\mathrm{p} 1}=134.6^{\circ}$ and $\theta_{\mathrm{S} 2}=146.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.016 ; \theta_{\mathrm{p} 2}=45.4^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $G=G_{1}+G_{2}=8.1 \mathrm{~dB}+10.6 \mathrm{~dB}=$ 18.7 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.18 \mathrm{~dB}=1.312, \mathrm{~F}_{2}=1.05 \mathrm{~dB}=1.274, \mathrm{G}_{1}=8.1 \mathrm{~dB}=6.457, \mathrm{G}_{2}=10.6 \mathrm{~dB}=11.482$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.355$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.301$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.142 \mathrm{~dB}$ and $\mathrm{G}=18.7 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|S_{11}\right|=0.640<1 ;\left|S_{22}\right|=0.550<1 ; \mathrm{K}=1.181>1 ;|\Delta|=|(0.241)+\mathrm{j} \cdot(0.152)|=0.285<1$
b) $\mathrm{B}_{1}=1.026 ; \mathrm{C}_{1}=(-0.406)+\mathrm{j} \cdot(0.298) ; \Gamma_{\mathrm{S}}=(-0.664)+\mathrm{j} \cdot(-0.488)=0.824 \angle-143.7^{\circ}$
$B_{2}=0.812 ; C_{2}=(-0.361)+\mathrm{j} \cdot(-0.156) ; \Gamma_{L}=(-0.717)+\mathrm{j} \cdot(0.310)=0.781 \angle 156.6^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=144.6^{\circ} ; \theta_{\mathrm{p} 1}=109.0^{\circ}$ or $\theta_{\mathrm{s} 2}=179.1^{\circ} ; \theta_{\mathrm{p} 2}=71.0^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=172.4^{\circ} ; \theta_{\mathrm{p} 1}=111.8^{\circ}$ or $\theta_{\mathrm{s} 2}=31.0^{\circ} ; \theta_{\mathrm{p} 2}=68.2^{\circ}$

Subject no. 15

1. $\mathrm{Z}=17.85+\mathrm{j} \cdot(-30.80) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.222+\mathrm{j} \cdot(-0.555)=0.597 \angle-111.8^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.950+\mathrm{j} \cdot 1.275 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.950+\mathrm{j} \cdot 1.275)=18.789 \Omega+\mathrm{j} \cdot(-25.2163) \Omega$
3. a) $\mathrm{Pin}=2.30 \mathrm{~mW}=3.617 \mathrm{dBm} ; \mathrm{Pc}=3.617 \mathrm{dBm}-4.60 \mathrm{~dB}=-0.983 \mathrm{dBm}=0.7975 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.30 \mathrm{~mW}-0.7975 \mathrm{~mW}=1.5025 \mathrm{~mW}=1.768 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=1.768 \mathrm{dBm}+7.1 \mathrm{~dB}=8.868 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=8.868 \mathrm{dBm}=7.71 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $8.868 \mathrm{dBm}-2.1 \mathrm{~dB}=6.768 \mathrm{dBm}=4.751 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-0.983 \mathrm{dBm}+10.2 \mathrm{~dB}=9.217 \mathrm{dBm}=8.351 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=8.868 \mathrm{dBm}-18.5 \mathrm{~dB}=-9.632 \mathrm{dBm}=0.109 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.118+j \cdot(-0.294)=0.317 \angle-68.048^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $\mathrm{Z}_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=88.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-0.667 ; \theta_{\mathrm{p} 1}=146.3^{\circ}$ and $\theta_{\mathrm{S} 2}=159.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.667 ; \theta_{\mathrm{p} 2}=33.7^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=8.9 \mathrm{~dB}+10.2 \mathrm{~dB}=$ 19.1 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.27 \mathrm{~dB}=1.340, \mathrm{~F}_{2}=1.08 \mathrm{~dB}=1.282, \mathrm{G}_{1}=8.9 \mathrm{~dB}=7.762, \mathrm{G}_{2}=10.2 \mathrm{~dB}=10.471$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.376$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.315$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.188 \mathrm{~dB}$ and $\mathrm{G}=19.1 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.620<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.114>1 ;|\Delta|=|(-0.096)+\mathrm{j} \cdot(0.264)|=0.281<1$
b) $\mathrm{B}_{1}=1.035 ; \mathrm{C}_{1}=(-0.506)+\mathrm{j} \cdot(0.059) ; \Gamma_{\mathrm{S}}=(-0.827)+\mathrm{j} \cdot(-0.097)=0.833 \angle-173.3^{\circ}$
$\mathrm{B}_{2}=0.807 ; \mathrm{C}_{2}=(-0.220)+\mathrm{j} \cdot(-0.325) ; \Gamma_{\mathrm{L}}=(-0.443)+\mathrm{j} \cdot(0.654)=0.790 \angle 124.1^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=159.9^{\circ} ; \theta_{\mathrm{p} 1}=108.4^{\circ}$ or $\theta_{\mathrm{s} 2}=13.5^{\circ} ; \theta_{\mathrm{p} 2}=71.6^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=9.0^{\circ} ; \theta_{\mathrm{p} 1}=111.2^{\circ}$ or $\theta_{\mathrm{s} 2}=46.9^{\circ} ; \theta_{\mathrm{p} 2}=68.8^{\circ}$

Subject no. 16

1. $Z=20.49+j \cdot(18.94) ; \Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=-0.323+j \cdot(0.356)=0.480 \angle 132.3^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.855+\mathrm{j} \cdot 1.275 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.855+\mathrm{j} \cdot 1.275)=18.140 \Omega+\mathrm{j} \cdot(-27.0511) \Omega$
3. a) $\mathrm{Pin}=1.60 \mathrm{~mW}=2.041 \mathrm{dBm} ; \mathrm{Pc}=2.041 \mathrm{dBm}-6.90 \mathrm{~dB}=-4.859 \mathrm{dBm}=0.3267 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=1.60 \mathrm{~mW}-0.3267 \mathrm{~mW}=1.2733 \mathrm{~mW}=1.049 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=1.049 \mathrm{dBm}+8.3 \mathrm{~dB}=9.349 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=9.349 \mathrm{dBm}=8.61 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $9.349 \mathrm{dBm}-2.2 \mathrm{~dB}=7.149 \mathrm{dBm}=5.187 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-4.859 \mathrm{dBm}+9.6 \mathrm{~dB}=4.741 \mathrm{dBm}=2.979 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=9.349 \mathrm{dBm}-21.7 \mathrm{~dB}=-12.351 \mathrm{dBm}=0.058 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.339+j \cdot(-0.353)=0.490 \angle-46.099^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=82.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.123 ; \theta_{\mathrm{p} 1}=131.7^{\circ}$ and $\theta_{\mathrm{S} 2}=143.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.123 ; \theta_{\mathrm{p} 2}=48.3^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.9 \mathrm{~dB}+10.3 \mathrm{~dB}=$ 20.2 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.15 \mathrm{~dB}=1.303, \mathrm{~F}_{2}=1.07 \mathrm{~dB}=1.279, \mathrm{G}_{1}=9.9 \mathrm{~dB}=9.772, \mathrm{G}_{2}=10.3 \mathrm{~dB}=10.715$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.332$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.308$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.165 \mathrm{~dB}$ and $\mathrm{G}=20.2 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.609<1 ;\left|\mathrm{S}_{22}\right|=0.557<1 ; \mathrm{K}=1.203>1 ;|\Delta|=|(0.236)+\mathrm{j} \cdot(-0.069)|=0.246<1$
b) $\mathrm{B}_{1}=1.000 ; \mathrm{C}_{1}=(-0.220)+\mathrm{j} \cdot(0.437) ; \Gamma_{\mathrm{S}}=(-0.363)+\mathrm{j} \cdot(-0.721)=0.807 \angle-116.7^{\circ}$
$B_{2}=0.879 ; C_{2}=(-0.424)+\mathrm{j} \cdot(-0.045) ; \Gamma_{L}=(-0.779)+\mathrm{j} \cdot(0.082)=0.783 \angle 174.0^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=130.3^{\circ} ; \theta_{\mathrm{p} 1}=110.1^{\circ}$ or $\theta_{\mathrm{s} 2}=166.4^{\circ} ; \theta_{\mathrm{p} 2}=69.9^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=163.8^{\circ} ; \theta_{\mathrm{p} 1}=111.7^{\circ}$ or $\theta_{\mathrm{s} 2}=22.3^{\circ} ; \theta_{\mathrm{p} 2}=68.3^{\circ}$

Subject no. 17

1. $\mathrm{Z}=60.00+\mathrm{j} \cdot(-71.45) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.361+\mathrm{j} \cdot(-0.415)=0.550 \angle-49.0^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $y=0.735+\mathrm{j} \cdot 0.905 ; Z=Z_{0} /(0.735+\mathrm{j} \cdot 0.905)=27.037 \Omega+\mathrm{j} \cdot(-33.2904) \Omega$
3. a) $\operatorname{Pin}=1.30 \mathrm{~mW}=1.139 \mathrm{dBm} ; \operatorname{Pc}=1.139 \mathrm{dBm}-5.75 \mathrm{~dB}=-4.611 \mathrm{dBm}=0.3459 \mathrm{~mW}$

Ideal lossless coupler: $P_{T}=1.30 \mathrm{~mW}-0.3459 \mathrm{~mW}=0.9541 \mathrm{~mW}=-0.204 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=-0.204 \mathrm{dBm}+8.9 \mathrm{~dB}=8.696 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out,max }}=\mathrm{P}_{\mathrm{A} 1}=8.696 \mathrm{dBm}=7.41 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $8.696 \mathrm{dBm}-0.7 \mathrm{~dB}=7.996 \mathrm{dBm}=6.304 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-4.611 \mathrm{dBm}+10.3 \mathrm{~dB}=5.689 \mathrm{dBm}=3.706 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=8.696 \mathrm{dBm}-17.5 \mathrm{~dB}=-8.804 \mathrm{dBm}=0.132 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.213+j \cdot(-0.437)=0.486 \angle-64.045^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $\mathrm{Z}_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=91.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-1.112 ; \theta_{\mathrm{p} 1}=132.0^{\circ}$ and $\theta_{\mathrm{S} 2}=152.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.112 ; \theta_{\mathrm{p} 2}=48.0^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=8.7 \mathrm{~dB}+10.5 \mathrm{~dB}=$ 19.2dB. The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.23 \mathrm{~dB}=1.327, \mathrm{~F}_{2}=1.08 \mathrm{~dB}=1.282, \mathrm{G}_{1}=8.7 \mathrm{~dB}=7.413, \mathrm{G}_{2}=10.5 \mathrm{~dB}=11.220$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.365$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.312$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.178 \mathrm{~dB}$ and $\mathrm{G}=19.2 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.634<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.213>1 ;|\Delta|=|(0.264)+\mathrm{j} \cdot(0.026)|=0.265<1$
b) $\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.327)+\mathrm{j} \cdot(0.383) ; \Gamma_{\mathrm{S}}=(-0.530)+\mathrm{j} \cdot(-0.620)=0.815 \angle-130.5^{\circ}$
$B_{2}=0.830 ; C_{2}=(-0.389)+\mathrm{j} \cdot(-0.103) ; \Gamma_{L}=(-0.749)+\mathrm{j} \cdot(0.199)=0.775 \angle 165.1^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=137.6^{\circ} ; \theta_{\mathrm{p} 1}=109.5^{\circ}$ or $\theta_{\mathrm{s} 2}=172.9^{\circ} ; \theta_{\mathrm{p} 2}=70.5^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=167.8^{\circ} ; \theta_{\mathrm{p} 1}=112.2^{\circ}$ or $\theta_{\mathrm{s} 2}=27.0^{\circ} ; \theta_{\mathrm{p} 2}=67.8^{\circ}$

Subject no. 18

1. $\mathrm{Z}=36.00+\mathrm{j} \cdot(54.03) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.166+\mathrm{j} \cdot(0.524)=0.550 \angle 72.4^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.890+\mathrm{j} \cdot 1.110 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.890+\mathrm{j} \cdot 1.110)=21.984 \Omega+\mathrm{j} \cdot(-27.4182) \Omega$
3. a) $\operatorname{Pin}=1.95 \mathrm{~mW}=2.900 \mathrm{dBm} ; \operatorname{Pc}=2.900 \mathrm{dBm}-6.10 \mathrm{~dB}=-3.200 \mathrm{dBm}=0.4787 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=1.95 \mathrm{~mW}-0.4787 \mathrm{~mW}=1.4713 \mathrm{~mW}=1.677 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=1.677 \mathrm{dBm}+8.7 \mathrm{~dB}=10.377 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=10.377 \mathrm{dBm}=10.91 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $10.377 \mathrm{dBm}-2.9 \mathrm{~dB}=7.477 \mathrm{dBm}=5.594 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-3.200 \mathrm{dBm}+8.5 \mathrm{~dB}=5.300 \mathrm{dBm}=3.389 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=10.377 \mathrm{dBm}-17.5 \mathrm{~dB}=-7.123 \mathrm{dBm}=0.194 \mathrm{~mW}$
4. $\Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.289+\mathrm{j} \cdot(0.440)=0.527 \angle 56.677^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=32.6^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.240 ; \theta_{\mathrm{p} 1}=128.9^{\circ}$ and $\theta_{\mathrm{S} 2}=90.8^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.240 ; \theta_{\mathrm{p} 2}=51.1^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.5 \mathrm{~dB}+10.3 \mathrm{~dB}=$ 19.8 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.25 \mathrm{~dB}=1.334, \mathrm{~F}_{2}=0.98 \mathrm{~dB}=1.253, \mathrm{G}_{1}=9.5 \mathrm{~dB}=8.913, \mathrm{G}_{2}=10.3 \mathrm{~dB}=10.715$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.362$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.284$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.087 \mathrm{~dB}$ and $\mathrm{G}=19.8 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.662<1 ;\left|\mathrm{S}_{22}\right|=0.516<1 ; \mathrm{K}=1.066>1 ;|\Delta|=|(-0.198)+\mathrm{j} \cdot(0.223)|=0.298<1$
b) $\mathrm{B}_{1}=1.083 ; \mathrm{C}_{1}=(-0.525)+\mathrm{j} \cdot(-0.116) ; \Gamma_{\mathrm{S}}=(-0.862)+\mathrm{j} \cdot(0.191)=0.883 \angle 167.5^{\circ}$
$\mathrm{B}_{2}=0.739 ; \mathrm{C}_{2}=(-0.171)+\mathrm{j} \cdot(-0.321) ; \Gamma_{\mathrm{L}}=(-0.392)+\mathrm{j} \cdot(0.735)=0.833 \angle 118.1^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=172.3^{\circ} ; \theta_{\mathrm{p} 1}=104.9^{\circ}$ or $\theta_{\mathrm{s} 2}=20.2^{\circ} ; \theta_{\mathrm{p} 2}=75.1^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=14.2^{\circ} ; \theta_{\mathrm{p} 1}=108.4^{\circ}$ or $\theta_{\mathrm{s} 2}=47.8^{\circ} ; \theta_{\mathrm{p} 2}=71.6^{\circ}$

Subject no. 19

1. $Z=51.00+\mathrm{j} \cdot(-34.54) ; \Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.114+\mathrm{j} \cdot(-0.303)=0.324 \angle-69.5^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.825+\mathrm{j} \cdot 1.280 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.825+\mathrm{j} \cdot 1.280)=17.788 \Omega+\mathrm{j} \cdot(-27.5978) \Omega$
3. a) $\mathrm{Pin}=2.00 \mathrm{~mW}=3.010 \mathrm{dBm} ; \mathrm{Pc}=3.010 \mathrm{dBm}-6.50 \mathrm{~dB}=-3.490 \mathrm{dBm}=0.4477 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.00 \mathrm{~mW}-0.4477 \mathrm{~mW}=1.5523 \mathrm{~mW}=1.910 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=1.910 \mathrm{dBm}+9.5 \mathrm{~dB}=11.410 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=11.410 \mathrm{dBm}=13.83 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $11.410 \mathrm{dBm}-1.3 \mathrm{~dB}=10.110 \mathrm{dBm}=10.256 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-3.490 \mathrm{dBm}+10.5 \mathrm{~dB}=7.010 \mathrm{dBm}=5.024 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=11.410 \mathrm{dBm}-19.8 \mathrm{~dB}=-8.390 \mathrm{dBm}=0.145 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.367+j \cdot(-0.363)=0.516 \angle-44.687^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=82.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.204 ; \theta_{\mathrm{p} 1}=129.7^{\circ}$ and $\theta_{\mathrm{S} 2}=141.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.204 ; \theta_{\mathrm{p} 2}=50.3^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.5 \mathrm{~dB}+10.5 \mathrm{~dB}=$ 20.0 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.10 \mathrm{~dB}=1.288, \mathrm{~F}_{2}=0.92 \mathrm{~dB}=1.236, \mathrm{G}_{1}=9.5 \mathrm{~dB}=8.913, \mathrm{G}_{2}=10.5 \mathrm{~dB}=11.220$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.315$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.262$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.009 \mathrm{~dB}$ and $\mathrm{G}=20.0 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.621<1 ;\left|\mathrm{S}_{22}\right|=0.553<1 ; \mathrm{K}=1.218>1 ;|\Delta|=|(0.248)+\mathrm{j} \cdot(-0.041)|=0.252<1$
b) $\mathrm{B}_{1}=1.017 ; \mathrm{C}_{1}=(-0.262)+\mathrm{j} \cdot(0.422) ; \Gamma_{\mathrm{S}}=(-0.427)+\mathrm{j} \cdot(-0.687)=0.809 \angle-121.9^{\circ}$
$\mathrm{B}_{2}=0.857 ; \mathrm{C}_{2}=(-0.409)+\mathrm{j} \cdot(-0.069) ; \Gamma_{\mathrm{L}}=(-0.766)+\mathrm{j} \cdot(0.128)=0.776 \angle 170.5^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=132.9^{\circ} ; \theta_{\mathrm{p} 1}=110.0^{\circ}$ or $\theta_{\mathrm{s} 2}=168.9^{\circ} ; \theta_{\mathrm{p} 2}=70.0^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=165.2^{\circ} ; \theta_{\mathrm{p} 1}=112.1^{\circ}$ or $\theta_{\mathrm{s} 2}=24.3^{\circ} ; \theta_{\mathrm{p} 2}=67.9^{\circ}$

Subject no. 20

1. $\mathrm{Z}=44.00+\mathrm{j} \cdot(-41.19) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.108+\mathrm{j} \cdot(-0.391)=0.406 \angle-74.6^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.840+\mathrm{j} \cdot 0.810 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.840+\mathrm{j} \cdot 0.810)=30.844 \Omega+\mathrm{j} \cdot(-29.7422) \Omega$
3. a) $\operatorname{Pin}=1.60 \mathrm{~mW}=2.041 \mathrm{dBm} ; \operatorname{Pc}=2.041 \mathrm{dBm}-4.40 \mathrm{~dB}=-2.359 \mathrm{dBm}=0.5809 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=1.60 \mathrm{~mW}-0.5809 \mathrm{~mW}=1.0191 \mathrm{~mW}=0.082 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=0.082 \mathrm{dBm}+7.7 \mathrm{~dB}=7.782 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=7.782 \mathrm{dBm}=6.00 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $7.782 \mathrm{dBm}-2.3 \mathrm{~dB}=5.482 \mathrm{dBm}=3.534 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-2.359 \mathrm{dBm}+9.8 \mathrm{~dB}=7.441 \mathrm{dBm}=5.548 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=7.782 \mathrm{dBm}-22.0 \mathrm{~dB}=-14.218 \mathrm{dBm}=0.038 \mathrm{~mW}$
4. $\Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.103+\mathrm{j} \cdot(0.358)=0.373 \angle 73.891^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=19.0^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-0.803 ; \theta_{\mathrm{p} 1}=141.2^{\circ}$ and $\theta_{\mathrm{S} 2}=87.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=0.803 ; \theta_{\mathrm{p} 2}=38.8^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.4 \mathrm{~dB}+10.8 \mathrm{~dB}=$ 20.2 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.19 \mathrm{~dB}=1.315, \mathrm{~F}_{2}=0.90 \mathrm{~dB}=1.230, \mathrm{G}_{1}=9.4 \mathrm{~dB}=8.710, \mathrm{G}_{2}=10.8 \mathrm{~dB}=12.023$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.342$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.256$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=0.992 \mathrm{~dB}$ and $\mathrm{G}=20.2 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.653<1 ;\left|\mathrm{S}_{22}\right|=0.519<1 ; \mathrm{K}=1.090>1 ;|\Delta|=|(-0.149)+\mathrm{j} \cdot(0.243)|=0.285<1$
b) $\mathrm{B}_{1}=1.076 ; \mathrm{C}_{1}=(-0.526)+\mathrm{j} \cdot(-0.083) ; \Gamma_{\mathrm{S}}=(-0.856)+\mathrm{j} \cdot(0.135)=0.866 \angle 171.0^{\circ}$
$\mathrm{B}_{2}=0.762 ; \mathrm{C}_{2}=(-0.199)+\mathrm{j} \cdot(-0.316) ; \Gamma_{\mathrm{L}}=(-0.434)+\mathrm{j} \cdot(0.690)=0.815 \angle 122.2^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=169.5^{\circ} ; \theta_{\mathrm{p} 1}=106.1^{\circ}$ or $\theta_{\mathrm{s} 2}=19.5^{\circ} ; \theta_{\mathrm{p} 2}=73.9^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=11.2^{\circ} ; \theta_{\mathrm{p} 1}=109.6^{\circ}$ or $\theta_{\mathrm{s} 2}=46.6^{\circ} ; \theta_{\mathrm{p} 2}=70.4^{\circ}$

Subject no. 21

1. $Z=38.00+\mathrm{j} \cdot(74.79) ; \Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.340+\mathrm{j} \cdot(0.561)=0.656 \angle 58.8^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=1.240+\mathrm{j} \cdot 0.825 ; \mathrm{Z}=\mathrm{Z}_{0} /(1.240+\mathrm{j} \cdot 0.825)=27.950 \Omega+\mathrm{j} \cdot(-18.5959) \Omega$
3. a) $\mathrm{Pin}=2.45 \mathrm{~mW}=3.892 \mathrm{dBm} ; \operatorname{Pc}=3.892 \mathrm{dBm}-5.55 \mathrm{~dB}=-1.658 \mathrm{dBm}=0.6826 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.45 \mathrm{~mW}-0.6826 \mathrm{~mW}=1.7674 \mathrm{~mW}=2.473 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=2.473 \mathrm{dBm}+8.4 \mathrm{~dB}=10.873 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\mathrm{out}, \max }=\mathrm{P}_{\mathrm{A} 1}=10.873 \mathrm{dBm}=12.23 \mathrm{~mW}, \mathrm{P}_{\mathrm{out}, \min }=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $10.873 \mathrm{dBm}-0.8 \mathrm{~dB}=10.073 \mathrm{dBm}=10.170 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-1.658 \mathrm{dBm}+10.8 \mathrm{~dB}=9.142 \mathrm{dBm}=8.207 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=10.873 \mathrm{dBm}-24.8 \mathrm{~dB}=-13.927 \mathrm{dBm}=0.040 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.195+j \cdot(-0.479)=0.517 \angle-67.873^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $\mathrm{Z}_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=94.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-1.209 ; \theta_{\mathrm{p} 1}=129.6^{\circ}$ and $\theta_{\mathrm{S} 2}=153.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.209 ; \theta_{\mathrm{p} 2}=50.4^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=8.4 \mathrm{~dB}+11.0 \mathrm{~dB}=$ 19.4 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.15 \mathrm{~dB}=1.303, \mathrm{~F}_{2}=1.02 \mathrm{~dB}=1.265, \mathrm{G}_{1}=8.4 \mathrm{~dB}=6.918, \mathrm{G}_{2}=11.0 \mathrm{~dB}=12.589$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.341$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.289$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.102 \mathrm{~dB}$ and $\mathrm{G}=19.4 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.640<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.184>1 ;|\Delta|=|(0.251)+\mathrm{j} \cdot(0.130)|=0.283<1$
b) $\mathrm{B}_{1}=1.027 ; \mathrm{C}_{1}=(-0.393)+\mathrm{j} \cdot(0.315) ; \Gamma_{\mathrm{S}}=(-0.642)+\mathrm{j} \cdot(-0.515)=0.824 \angle-141.3^{\circ}$
$\mathrm{B}_{2}=0.813 ; \mathrm{C}_{2}=(-0.367)+\mathrm{j} \cdot(-0.145) ; \Gamma_{\mathrm{L}}=(-0.726)+\mathrm{j} \cdot(0.288)=0.781 \angle 158.4^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=143.4^{\circ} ; \theta_{\mathrm{p} 1}=109.0^{\circ}$ or $\theta_{\mathrm{s} 2}=177.9^{\circ} ; \theta_{\mathrm{p} 2}=71.0^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=171.5^{\circ} ; \theta_{\mathrm{p} 1}=111.8^{\circ}$ or $\theta_{\mathrm{s} 2}=30.1^{\circ} ; \theta_{\mathrm{p} 2}=68.2^{\circ}$

Subject no. 22

1. $\mathrm{Z}=50.00+\mathrm{j} \cdot(-50.55) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.204+\mathrm{j} \cdot(-0.403)=0.451 \angle-63.2^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.995-\mathrm{j} \cdot 0.700 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.995-\mathrm{j} \cdot 0.700)=33.614 \Omega+\mathrm{j} \cdot(23.6482) \Omega$
3. a) $\operatorname{Pin}=3.20 \mathrm{~mW}=5.051 \mathrm{dBm} ; \operatorname{Pc}=5.051 \mathrm{dBm}-4.20 \mathrm{~dB}=0.851 \mathrm{dBm}=1.2166 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=3.20 \mathrm{~mW}-1.2166 \mathrm{~mW}=1.9834 \mathrm{~mW}=2.974 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=2.974 \mathrm{dBm}+9.8 \mathrm{~dB}=12.774 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=12.774 \mathrm{dBm}=18.94 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $12.774 \mathrm{dBm}-1.6 \mathrm{~dB}=11.174 \mathrm{dBm}=13.104 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=0.851 \mathrm{dBm}+8.3 \mathrm{~dB}=9.151 \mathrm{dBm}=8.225 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=12.774 \mathrm{dBm}-20.4 \mathrm{~dB}=-7.626 \mathrm{dBm}=0.173 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.223+j \cdot(0.475)=0.525 \angle 64.827^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=28.4^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.233 ; \theta_{\mathrm{p} 1}=129.0^{\circ}$ and $\theta_{\mathrm{S} 2}=86.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.233 ; \theta_{\mathrm{p} 2}=51.0^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=8.8 \mathrm{~dB}+11.8 \mathrm{~dB}=$ 20.6 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.12 \mathrm{~dB}=1.294, \mathrm{~F}_{2}=1.06 \mathrm{~dB}=1.276, \mathrm{G}_{1}=8.8 \mathrm{~dB}=7.586, \mathrm{G}_{2}=11.8 \mathrm{~dB}=15.136$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.331$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.296$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.126 \mathrm{~dB}$ and $\mathrm{G}=20.6 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.656<1 ;\left|\mathrm{S}_{22}\right|=0.518<1 ; \mathrm{K}=1.082>1 ;|\Delta|=|(-0.166)+\mathrm{j} \cdot(0.237)|=0.289<1$
b) $\mathrm{B}_{1}=1.078 ; \mathrm{C}_{1}=(-0.526)+\mathrm{j} \cdot(-0.094) ; \Gamma_{\mathrm{S}}=(-0.858)+\mathrm{j} \cdot(0.154)=0.872 \angle 169.9^{\circ}$
$\mathrm{B}_{2}=0.754 ; \mathrm{C}_{2}=(-0.189)+\mathrm{j} \cdot(-0.318) ; \Gamma_{\mathrm{L}}=(-0.420)+\mathrm{j} \cdot(0.705)=0.821 \angle 120.8^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=170.4^{\circ} ; \theta_{\mathrm{p} 1}=105.7^{\circ}$ or $\theta_{\mathrm{s} 2}=19.7^{\circ} ; \theta_{\mathrm{p} 2}=74.3^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=12.2^{\circ} ; \theta_{\mathrm{p} 1}=109.2^{\circ}$ or $\theta_{\mathrm{s} 2}=47.0^{\circ} ; \theta_{\mathrm{p} 2}=70.8^{\circ}$

Subject no. 23

1. $Z=31.32+\mathrm{j} \cdot(22.86) ; \Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=-0.140+j \cdot(0.320)=0.350 \angle 113.6^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $y=0.745+j \cdot 0.855 ; Z=Z_{0} /(0.745+j \cdot 0.855)=28.965 \Omega+j \cdot(-33.2413) \Omega$
3. a) $\mathrm{Pin}=2.20 \mathrm{~mW}=3.424 \mathrm{dBm} ; \mathrm{Pc}=3.424 \mathrm{dBm}-6.95 \mathrm{~dB}=-3.526 \mathrm{dBm}=0.4440 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.20 \mathrm{~mW}-0.4440 \mathrm{~mW}=1.7560 \mathrm{~mW}=2.445 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=2.445 \mathrm{dBm}+6.0 \mathrm{~dB}=8.445 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=8.445 \mathrm{dBm}=6.99 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $8.445 \mathrm{dBm}-0.8 \mathrm{~dB}=7.645 \mathrm{dBm}=5.815 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-3.526 \mathrm{dBm}+8.7 \mathrm{~dB}=5.174 \mathrm{dBm}=3.292 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=8.445 \mathrm{dBm}-24.2 \mathrm{~dB}=-15.755 \mathrm{dBm}=0.027 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.229+j \cdot(0.449)=0.504 \angle 63.020^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=28.6^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.168 ; \theta_{\mathrm{p} 1}=130.6^{\circ}$ and $\theta_{\mathrm{S} 2}=88.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.168 ; \theta_{\mathrm{p} 2}=49.4^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.0 \mathrm{~dB}+10.2 \mathrm{~dB}=$ 19.2 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.27 \mathrm{~dB}=1.340, \mathrm{~F}_{2}=1.02 \mathrm{~dB}=1.265, \mathrm{G}_{1}=9.0 \mathrm{~dB}=7.943, \mathrm{G}_{2}=10.2 \mathrm{~dB}=10.471$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.373$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.297$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.130 \mathrm{~dB}$ and $\mathrm{G}=19.2 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.623<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.112>1 ;|\Delta|=|(-0.100)+\mathrm{j} \cdot(0.262)|=0.281<1$
b) $\mathrm{B}_{1}=1.039 ; \mathrm{C}_{1}=(-0.509)+\mathrm{j} \cdot(0.047) ; \Gamma_{\mathrm{S}}=(-0.833)+\mathrm{j} \cdot(-0.076)=0.836 \angle-174.8^{\circ}$
$\mathrm{B}_{2}=0.804 ; \mathrm{C}_{2}=(-0.219)+\mathrm{j} \cdot(-0.324) ; \Gamma_{\mathrm{L}}=(-0.443)+\mathrm{j} \cdot(0.656)=0.792 \angle 124.0^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=160.8^{\circ} ; \theta_{\mathrm{p} 1}=108.2^{\circ} \underline{\text { or }} \theta_{\mathrm{s} 2}=14.0^{\circ} ; \theta_{\mathrm{p} 2}=71.8^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=9.2^{\circ} ; \theta_{\mathrm{p} 1}=111.1^{\circ}$ or $\theta_{\mathrm{s} 2}=46.8^{\circ} ; \theta_{\mathrm{p} 2}=68.9^{\circ}$

Subject no. 24

1. $\mathrm{Z}=16.58+\mathrm{j} \cdot(-23.89) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.331+\mathrm{j} \cdot(-0.477)=0.581 \angle-124.7^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.805+\mathrm{j} \cdot 0.845 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.805+\mathrm{j} \cdot 0.845)=29.551 \Omega+\mathrm{j} \cdot(-31.0194) \Omega$
3. a) $\mathrm{Pin}=3.60 \mathrm{~mW}=5.563 \mathrm{dBm} ; \mathrm{Pc}=5.563 \mathrm{dBm}-6.45 \mathrm{~dB}=-0.887 \mathrm{dBm}=0.8153 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=3.60 \mathrm{~mW}-0.8153 \mathrm{~mW}=2.7847 \mathrm{~mW}=4.448 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=4.448 \mathrm{dBm}+7.4 \mathrm{~dB}=11.848 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out,max }}=\mathrm{P}_{\mathrm{A} 1}=11.848 \mathrm{dBm}=15.30 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $11.848 \mathrm{dBm}-2.9 \mathrm{~dB}=8.948 \mathrm{dBm}=7.848 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-0.887 \mathrm{dBm}+9.4 \mathrm{~dB}=8.513 \mathrm{dBm}=7.101 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=11.848 \mathrm{dBm}-17.1 \mathrm{~dB}=-5.252 \mathrm{dBm}=0.298 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.261+\mathrm{j} \cdot(-0.394)=0.473 \angle-56.523^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $\mathrm{Z}_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=87.4^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.074 ; \theta_{\mathrm{p} 1}=133.0^{\circ}$ and $\theta_{\mathrm{S} 2}=149.1^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.074 ; \theta_{\mathrm{p} 2}=47.0^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $G=G_{1}+G_{2}=9.1 \mathrm{~dB}+10.0 \mathrm{~dB}=$ 19.1 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.29 \mathrm{~dB}=1.346, \mathrm{~F}_{2}=0.97 \mathrm{~dB}=1.250, \mathrm{G}_{1}=9.1 \mathrm{~dB}=8.128, \mathrm{G}_{2}=10.0 \mathrm{~dB}=10.000$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.377$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.285$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.089 \mathrm{~dB}$ and $\mathrm{G}=19.1 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.618<1 ;\left|\mathrm{S}_{22}\right|=0.554<1 ; \mathrm{K}=1.214>1 ;|\Delta|=|(0.246)+\mathrm{j} \cdot(-0.048)|=0.250<1$
b) $\mathrm{B}_{1}=1.012 ; \mathrm{C}_{1}=(-0.252)+\mathrm{j} \cdot(0.426) ; \Gamma_{\mathrm{S}}=(-0.411)+\mathrm{j} \cdot(-0.696)=0.808 \angle-120.6^{\circ}$
$\mathrm{B}_{2}=0.862 ; \mathrm{C}_{2}=(-0.413)+\mathrm{j} \cdot(-0.063) ; \Gamma_{\mathrm{L}}=(-0.769)+\mathrm{j} \cdot(0.117)=0.778 \angle 171.4^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=132.3^{\circ} ; \theta_{\mathrm{p} 1}=110.0^{\circ}$ or $\theta_{\mathrm{s} 2}=168.3^{\circ} ; \theta_{\mathrm{p} 2}=70.0^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=164.9^{\circ} ; \theta_{\mathrm{p} 1}=112.0^{\circ}$ or $\theta_{\mathrm{s} 2}=23.8^{\circ} ; \theta_{\mathrm{p} 2}=68.0^{\circ}$

Subject no. 25

1. $\mathrm{Z}=59.00+\mathrm{j} \cdot(-30.81) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.150+\mathrm{j} \cdot(-0.240)=0.283 \angle-57.9^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=1.135-\mathrm{j} \cdot 0.775 ; \mathrm{Z}=\mathrm{Z}_{0} /(1.135-\mathrm{j} \cdot 0.775)=30.045 \Omega+\mathrm{j} \cdot(20.5151) \Omega$
3. a) $\operatorname{Pin}=2.45 \mathrm{~mW}=3.892 \mathrm{dBm} ; \mathrm{Pc}=3.892 \mathrm{dBm}-5.85 \mathrm{~dB}=-1.958 \mathrm{dBm}=0.6370 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.45 \mathrm{~mW}-0.6370 \mathrm{~mW}=1.8130 \mathrm{~mW}=2.584 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=2.584 \mathrm{dBm}+7.0 \mathrm{~dB}=9.584 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out,max }}=\mathrm{P}_{\mathrm{A} 1}=9.584 \mathrm{dBm}=9.09 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $9.584 \mathrm{dBm}-1.0 \mathrm{~dB}=8.584 \mathrm{dBm}=7.218 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-1.958 \mathrm{dBm}+10.3 \mathrm{~dB}=8.342 \mathrm{dBm}=6.826 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\mathrm{out}}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=9.584 \mathrm{dBm}-20.5 \mathrm{~dB}=-10.916 \mathrm{dBm}=0.081 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.012+j \cdot(0.506)=0.506 \angle 88.589^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=15.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.174 ; \theta_{\mathrm{p} 1}=130.4^{\circ}$ and $\theta_{\mathrm{S} 2}=75.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.174 ; \theta_{\mathrm{p} 2}=49.6^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.5 \mathrm{~dB}+11.5 \mathrm{~dB}=$ 21.0 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.12 \mathrm{~dB}=1.294, \mathrm{~F}_{2}=0.93 \mathrm{~dB}=1.239, \mathrm{G}_{1}=9.5 \mathrm{~dB}=8.913, \mathrm{G}_{2}=11.5 \mathrm{~dB}=14.125$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.321$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.260$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.002 \mathrm{~dB}$ and $\mathrm{G}=21.0 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.641<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.102>1 ;|\Delta|=|(-0.122)+\mathrm{j} \cdot(0.252)|=0.280<1$
b) $\mathrm{B}_{1}=1.062 ; \mathrm{C}_{1}=(-0.523)+\mathrm{j} \cdot(-0.032) ; \Gamma_{\mathrm{S}}=(-0.852)+\mathrm{j} \cdot(0.052)=0.853 \angle 176.5^{\circ}$
$\mathrm{B}_{2}=0.781 ; \mathrm{C}_{2}=(-0.212)+\mathrm{j} \cdot(-0.317) ; \Gamma_{\mathrm{L}}=(-0.447)+\mathrm{j} \cdot(0.669)=0.805 \angle 123.7^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=166.0^{\circ} ; \theta_{\mathrm{p} 1}=107.0^{\circ} \underline{\text { or }} \theta_{\mathrm{s} 2}=17.4^{\circ} ; \theta_{\mathrm{p} 2}=73.0^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=9.9^{\circ} ; \theta_{\mathrm{p} 1}=110.2^{\circ}$ or $\theta_{\mathrm{s} 2}=46.3^{\circ} ; \theta_{\mathrm{p} 2}=69.8^{\circ}$

Subject no. 26

1. $\mathrm{Z}=20.55+\mathrm{j} \cdot(-24.60) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.264+\mathrm{j} \cdot(-0.441)=0.514 \angle-120.9^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=1.265+\mathrm{j} \cdot 1.155 ; \mathrm{Z}=\mathrm{Z}_{0} /(1.265+\mathrm{j} \cdot 1.155)=21.556 \Omega+\mathrm{j} \cdot(-19.6813) \Omega$
3. a) $\mathrm{Pin}=1.90 \mathrm{~mW}=2.788 \mathrm{dBm} ; \mathrm{Pc}=2.788 \mathrm{dBm}-4.80 \mathrm{~dB}=-2.012 \mathrm{dBm}=0.6291 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=1.90 \mathrm{~mW}-0.6291 \mathrm{~mW}=1.2709 \mathrm{~mW}=1.041 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=1.041 \mathrm{dBm}+6.4 \mathrm{~dB}=7.441 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=7.441 \mathrm{dBm}=5.55 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $7.441 \mathrm{dBm}-0.9 \mathrm{~dB}=6.541 \mathrm{dBm}=4.509 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-2.012 \mathrm{dBm}+9.3 \mathrm{~dB}=7.288 \mathrm{dBm}=5.355 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=7.441 \mathrm{dBm}-16.1 \mathrm{~dB}=-8.659 \mathrm{dBm}=0.136 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.282+\mathrm{j} \cdot(-0.419)=0.505 \angle-56.030^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $\mathrm{Z}_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=88.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-1.172 ; \theta_{\mathrm{p} 1}=130.5^{\circ}$ and $\theta_{\mathrm{S} 2}=147.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.172 ; \theta_{\mathrm{p} 2}=49.5^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=8.8 \mathrm{~dB}+11.6 \mathrm{~dB}=$ 20.4 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.25 \mathrm{~dB}=1.334, \mathrm{~F}_{2}=0.91 \mathrm{~dB}=1.233, \mathrm{G}_{1}=8.8 \mathrm{~dB}=7.586, \mathrm{G}_{2}=11.6 \mathrm{~dB}=14.454$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.364$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.256$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=0.991 \mathrm{~dB}$ and $\mathrm{G}=20.4 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.629<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.108>1 ;|\Delta|=|(-0.107)+\mathrm{j} \cdot(0.259)|=0.280<1$
b) $\mathrm{B}_{1}=1.047 ; \mathrm{C}_{1}=(-0.515)+\mathrm{j} \cdot(0.021) ; \Gamma_{\mathrm{S}}=(-0.842)+\mathrm{j} \cdot(-0.034)=0.842 \angle-177.7^{\circ}$
$\mathrm{B}_{2}=0.796 ; \mathrm{C}_{2}=(-0.217)+\mathrm{j} \cdot(-0.322) ; \Gamma_{\mathrm{L}}=(-0.445)+\mathrm{j} \cdot(0.661)=0.797 \angle 124.0^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=162.5^{\circ} ; \theta_{\mathrm{p} 1}=107.7^{\circ} \underline{\text { or }} \theta_{\mathrm{s} 2}=15.1^{\circ} ; \theta_{\mathrm{p} 2}=72.3^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=9.4^{\circ} ; \theta_{\mathrm{p} 1}=110.8^{\circ}$ or $\theta_{\mathrm{s} 2}=46.6^{\circ} ; \theta_{\mathrm{p} 2}=69.2^{\circ}$

Subject no. 27

1. $\mathrm{Z}=74.00+\mathrm{j} \cdot(64.31) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.364+\mathrm{j} \cdot(0.330)=0.491 \angle 42.1^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=1.085+\mathrm{j} \cdot 0.860 ; \mathrm{Z}=\mathrm{Z}_{0} /(1.085+\mathrm{j} \cdot 0.860)=28.302 \Omega+\mathrm{j} \cdot(-22.4329) \Omega$
3. a) $\mathrm{Pin}=1.80 \mathrm{~mW}=2.553 \mathrm{dBm} ; \mathrm{Pc}=2.553 \mathrm{dBm}-5.55 \mathrm{~dB}=-2.997 \mathrm{dBm}=0.5015 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=1.80 \mathrm{~mW}-0.5015 \mathrm{~mW}=1.2985 \mathrm{~mW}=1.134 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=1.134 \mathrm{dBm}+9.5 \mathrm{~dB}=10.634 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=10.634 \mathrm{dBm}=11.57 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $10.634 \mathrm{dBm}-1.9 \mathrm{~dB}=8.734 \mathrm{dBm}=7.472 \mathrm{~mW}$
b) $P_{\text {meas }}=P_{C}+G_{2}=-2.997 \mathrm{dBm}+9.7 \mathrm{~dB}=6.703 \mathrm{dBm}=4.680 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\mathrm{out}}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=10.634 \mathrm{dBm}-17.0 \mathrm{~dB}=-6.366 \mathrm{dBm}=0.231 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.052+j \cdot(0.309)=0.314 \angle 80.520^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $\mathrm{Z}_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=13.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-0.661 ; \theta_{\mathrm{p} 1}=146.5^{\circ}$ and $\theta_{\mathrm{S} 2}=85.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=0.661 ; \theta_{\mathrm{p} 2}=33.5^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=8.0 \mathrm{~dB}+11.6 \mathrm{~dB}=$ 19.6 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.26 \mathrm{~dB}=1.337, \mathrm{~F}_{2}=1.05 \mathrm{~dB}=1.274, \mathrm{G}_{1}=8.0 \mathrm{~dB}=6.310, \mathrm{G}_{2}=11.6 \mathrm{~dB}=14.454$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.380$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.297$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.129 \mathrm{~dB}$ and $\mathrm{G}=19.6 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.665<1 ;\left|\mathrm{S}_{22}\right|=0.515<1 ; \mathrm{K}=1.059>1 ;|\Delta|=|(-0.214)+\mathrm{j} \cdot(0.215)|=0.303<1$
b) $\mathrm{B}_{1}=1.085 ; \mathrm{C}_{1}=(-0.524)+\mathrm{j} \cdot(-0.128) ; \Gamma_{\mathrm{S}}=(-0.864)+\mathrm{j} \cdot(0.211)=0.890 \angle 166.3^{\circ}$
$\mathrm{B}_{2}=0.731 ; \mathrm{C}_{2}=(-0.162)+\mathrm{j} \cdot(-0.322) ; \Gamma_{\mathrm{L}}=(-0.378)+\mathrm{j} \cdot(0.750)=0.840 \angle 116.7^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=173.3^{\circ} ; \theta_{\mathrm{p} 1}=104.4^{\circ}$ or $\theta_{\mathrm{s} 2}=20.4^{\circ} ; \theta_{\mathrm{p} 2}=75.6^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=15.2^{\circ} ; \theta_{\mathrm{p} 1}=107.9^{\circ}$ or $\theta_{\mathrm{s} 2}=48.1^{\circ} ; \theta_{\mathrm{p} 2}=72.1^{\circ}$

Subject no. 28

1. $\mathrm{Z}=34.18+\mathrm{j} \cdot(-23.25) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.104+\mathrm{j} \cdot(-0.305)=0.322 \angle-108.8^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.715-\mathrm{j} \cdot 0.940 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.715-\mathrm{j} \cdot 0.940)=25.630 \Omega+\mathrm{j} \cdot(33.6960) \Omega$
3. a) $\mathrm{Pin}=2.30 \mathrm{~mW}=3.617 \mathrm{dBm} ; \operatorname{Pc}=3.617 \mathrm{dBm}-4.30 \mathrm{~dB}=-0.683 \mathrm{dBm}=0.8545 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.30 \mathrm{~mW}-0.8545 \mathrm{~mW}=1.4455 \mathrm{~mW}=1.600 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=1.600 \mathrm{dBm}+8.1 \mathrm{~dB}=9.700 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=9.700 \mathrm{dBm}=9.33 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $9.700 \mathrm{dBm}-1.0 \mathrm{~dB}=8.700 \mathrm{dBm}=7.413 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-0.683 \mathrm{dBm}+8.2 \mathrm{~dB}=7.517 \mathrm{dBm}=5.646 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=9.700 \mathrm{dBm}-23.9 \mathrm{~dB}=-14.200 \mathrm{dBm}=0.038 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.353+j \cdot(-0.378)=0.518 \angle-46.961^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=84.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-1.210 ; \theta_{\mathrm{p} 1}=129.6^{\circ}$ and $\theta_{\mathrm{S} 2}=142.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.210 ; \theta_{\mathrm{p} 2}=50.4^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $G=G_{1}+G_{2}=8.8 \mathrm{~dB}+11.0 \mathrm{~dB}=$ 19.8 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.24 \mathrm{~dB}=1.330, \mathrm{~F}_{2}=1.04 \mathrm{~dB}=1.271, \mathrm{G}_{1}=8.8 \mathrm{~dB}=7.586, \mathrm{G}_{2}=11.0 \mathrm{~dB}=12.589$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.366$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.297$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.129 \mathrm{~dB}$ and $\mathrm{G}=19.8 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|S_{11}\right|=0.626<1 ;\left|S_{22}\right|=0.520<1 ; \mathrm{K}=1.110>1 ;|\Delta|=|(-0.103)+\mathrm{j} \cdot(0.261)|=0.280<1$
b) $\mathrm{B}_{1}=1.043 ; \mathrm{C}_{1}=(-0.512)+\mathrm{j} \cdot(0.034) ; \Gamma_{\mathrm{S}}=(-0.837)+\mathrm{j} \cdot(-0.055)=0.839 \angle-176.2^{\circ}$
$\mathrm{B}_{2}=0.800 ; \mathrm{C}_{2}=(-0.218)+\mathrm{j} \cdot(-0.323) ; \Gamma_{\mathrm{L}}=(-0.444)+\mathrm{j} \cdot(0.659)=0.795 \angle 124.0^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=161.6^{\circ} ; \theta_{\mathrm{p} 1}=107.9^{\circ}$ or $\theta_{\mathrm{s} 2}=14.6^{\circ} ; \theta_{\mathrm{p} 2}=72.1^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=9.3^{\circ} ; \theta_{\mathrm{p} 1}=110.9^{\circ}$ or $\theta_{\mathrm{s} 2}=46.7^{\circ} ; \theta_{\mathrm{p} 2}=69.1^{\circ}$

Subject no. 29

1. $\mathrm{Z}=29.27+\mathrm{j} \cdot(19.30) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.191+\mathrm{j} \cdot(0.290)=0.347 \angle 123.4^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.985-\mathrm{j} \cdot 0.815 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.985-\mathrm{j} \cdot 0.815)=30.132 \Omega+\mathrm{j} \cdot(24.9319) \Omega$
3. a) $\mathrm{Pin}=2.55 \mathrm{~mW}=4.065 \mathrm{dBm} ; \mathrm{Pc}=4.065 \mathrm{dBm}-5.05 \mathrm{~dB}=-0.985 \mathrm{dBm}=0.7972 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.55 \mathrm{~mW}-0.7972 \mathrm{~mW}=1.7528 \mathrm{~mW}=2.437 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=2.437 \mathrm{dBm}+7.4 \mathrm{~dB}=9.837 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=9.837 \mathrm{dBm}=9.63 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $9.837 \mathrm{dBm}-2.8 \mathrm{~dB}=7.037 \mathrm{dBm}=5.055 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-0.985 \mathrm{dBm}+8.1 \mathrm{~dB}=7.115 \mathrm{dBm}=5.147 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=9.837 \mathrm{dBm}-17.4 \mathrm{~dB}=-7.563 \mathrm{dBm}=0.175 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.104+j \cdot(-0.365)=0.380 \angle-74.120^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $\mathrm{Z}_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=93.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-0.821 ; \theta_{\mathrm{p} 1}=140.6^{\circ}$ and $\theta_{\mathrm{S} 2}=160.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.821 ; \theta_{\mathrm{p} 2}=39.4^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=8.8 \mathrm{~dB}+11.1 \mathrm{~dB}=$ 19.9 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.24 \mathrm{~dB}=1.330, \mathrm{~F}_{2}=1.08 \mathrm{~dB}=1.282, \mathrm{G}_{1}=8.8 \mathrm{~dB}=7.586, \mathrm{G}_{2}=11.1 \mathrm{~dB}=12.882$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.368$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.308$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.166 \mathrm{~dB}$ and $\mathrm{G}=19.9 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.617<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.125>1 ;|\Delta|=|(-0.084)+\mathrm{j} \cdot(0.264)|=0.277<1$
b) $\mathrm{B}_{1}=1.033 ; \mathrm{C}_{1}=(-0.502)+\mathrm{j} \cdot(0.072) ; \Gamma_{\mathrm{S}}=(-0.818)+\mathrm{j} \cdot(-0.117)=0.826 \angle-171.9^{\circ}$
$\mathrm{B}_{2}=0.813 ; \mathrm{C}_{2}=(-0.224)+\mathrm{j} \cdot(-0.324) ; \Gamma_{\mathrm{L}}=(-0.445)+\mathrm{j} \cdot(0.644)=0.783 \angle 124.7^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=158.8^{\circ} ; \theta_{\mathrm{p} 1}=108.8^{\circ} \underline{\text { or }} \theta_{\mathrm{s} 2}=13.1^{\circ} ; \theta_{\mathrm{p} 2}=71.2^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=8.4^{\circ} ; \theta_{\mathrm{p} 1}=111.7^{\circ}$ or $\theta_{\mathrm{s} 2}=46.9^{\circ} ; \theta_{\mathrm{p} 2}=68.3^{\circ}$

Subject no. 30

1. $\mathrm{Z}=33.91+\mathrm{j} \cdot(-27.98) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.072+\mathrm{j} \cdot(-0.358)=0.365 \angle-101.5^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.900+\mathrm{j} \cdot 0.990 ; Z=Z_{0} /(0.900+\mathrm{j} \cdot 0.990)=25.138 \Omega+\mathrm{j} \cdot(-27.6521) \Omega$
3. a) $\mathrm{Pin}=2.80 \mathrm{~mW}=4.472 \mathrm{dBm} ; \mathrm{Pc}=4.472 \mathrm{dBm}-4.65 \mathrm{~dB}=-0.178 \mathrm{dBm}=0.9597 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.80 \mathrm{~mW}-0.9597 \mathrm{~mW}=1.8403 \mathrm{~mW}=2.649 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=2.649 \mathrm{dBm}+7.3 \mathrm{~dB}=9.949 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=9.949 \mathrm{dBm}=9.88 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $9.949 \mathrm{dBm}-1.6 \mathrm{~dB}=8.349 \mathrm{dBm}=6.837 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-0.178 \mathrm{dBm}+10.5 \mathrm{~dB}=10.322 \mathrm{dBm}=10.769 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=9.949 \mathrm{dBm}-21.7 \mathrm{~dB}=-11.751 \mathrm{dBm}=0.067 \mathrm{~mW}$
4. $\Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.226+\mathrm{j} \cdot(-0.264)=0.348 \angle-49.474^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=79.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-0.742 ; \theta_{\mathrm{p} 1}=143.4^{\circ}$ and $\theta_{\mathrm{S} 2}=149.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.742 ; \theta_{\mathrm{p} 2}=36.6^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.8 \mathrm{~dB}+11.0 \mathrm{~dB}=$ 20.8 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.11 \mathrm{~dB}=1.291, \mathrm{~F}_{2}=0.90 \mathrm{~dB}=1.230, \mathrm{G}_{1}=9.8 \mathrm{~dB}=9.550, \mathrm{G}_{2}=11.0 \mathrm{~dB}=12.589$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.315$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.253$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=0.981 \mathrm{~dB}$ and $\mathrm{G}=20.8 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|S_{11}\right|=0.640<1 ;\left|S_{22}\right|=0.550<1 ; \mathrm{K}=1.187>1 ;|\Delta|=|(0.259)+\mathrm{j} \cdot(0.107)|=0.280<1$
b) $\mathrm{B}_{1}=1.028 ; \mathrm{C}_{1}=(-0.380)+\mathrm{j} \cdot(0.332) ; \Gamma_{\mathrm{S}}=(-0.620)+\mathrm{j} \cdot(-0.542)=0.823 \angle-138.8^{\circ}$
$B_{2}=0.814 ; \mathrm{C}_{2}=(-0.371)+\mathrm{j} \cdot(-0.134) ; \Gamma_{\mathrm{L}}=(-0.734)+\mathrm{j} \cdot(0.265)=0.781 \angle 160.1^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=142.1^{\circ} ; \theta_{\mathrm{p} 1}=109.0^{\circ}$ or $\theta_{\mathrm{s} 2}=176.7^{\circ} ; \theta_{\mathrm{p} 2}=71.0^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=170.6^{\circ} ; \theta_{\mathrm{p} 1}=111.8^{\circ}$ or $\theta_{\mathrm{s} 2}=29.3^{\circ} ; \theta_{\mathrm{p} 2}=68.2^{\circ}$

Subject no. 31

1. $Z=35.65+j \cdot(29.46) ; \Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=-0.044+j \cdot(0.359)=0.362 \angle 97.0^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.870-\mathrm{j} \cdot 0.775 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.870-\mathrm{j} \cdot 0.775)=32.044 \Omega+\mathrm{j} \cdot(28.5446) \Omega$
3. a) $\mathrm{Pin}=3.85 \mathrm{~mW}=5.855 \mathrm{dBm} ; \mathrm{Pc}=5.855 \mathrm{dBm}-5.90 \mathrm{~dB}=-0.045 \mathrm{dBm}=0.9896 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=3.85 \mathrm{~mW}-0.9896 \mathrm{~mW}=2.8604 \mathrm{~mW}=4.564 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=4.564 \mathrm{dBm}+6.3 \mathrm{~dB}=10.864 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=10.864 \mathrm{dBm}=12.20 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $10.864 \mathrm{dBm}-2.5 \mathrm{~dB}=8.364 \mathrm{dBm}=6.862 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-0.045 \mathrm{dBm}+8.6 \mathrm{~dB}=8.555 \mathrm{dBm}=7.169 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=10.864 \mathrm{dBm}-15.9 \mathrm{~dB}=-5.036 \mathrm{dBm}=0.314 \mathrm{~mW}$
4. $\Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.253+\mathrm{j} \cdot(0.565)=0.619 \angle 65.858^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=31.2^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.575 ; \theta_{\mathrm{p} 1}=122.4^{\circ}$ and $\theta_{\mathrm{S} 2}=83.0^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.575 ; \theta_{\mathrm{p} 2}=57.6^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.7 \mathrm{~dB}+10.4 \mathrm{~dB}=$ 20.1 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.22 \mathrm{~dB}=1.324, \mathrm{~F}_{2}=0.90 \mathrm{~dB}=1.230, \mathrm{G}_{1}=9.7 \mathrm{~dB}=9.333, \mathrm{G}_{2}=10.4 \mathrm{~dB}=10.965$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.349$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.260$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.003 \mathrm{~dB}$ and $\mathrm{G}=20.1 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.635<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.105>1 ;|\Delta|=|(-0.115)+\mathrm{j} \cdot(0.256)|=0.280<1$
b) $\mathrm{B}_{1}=1.054 ; \mathrm{C}_{1}=(-0.520)+\mathrm{j} \cdot(-0.005) ; \Gamma_{\mathrm{S}}=(-0.848)+\mathrm{j} \cdot(0.008)=0.848 \angle 179.4^{\circ}$
$\mathrm{B}_{2}=0.789 ; \mathrm{C}_{2}=(-0.214)+\mathrm{j} \cdot(-0.320) ; \Gamma_{\mathrm{L}}=(-0.446)+\mathrm{j} \cdot(0.665)=0.801 \angle 123.9^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=164.3^{\circ} ; \theta_{\mathrm{p} 1}=107.3^{\circ} \underline{\text { or }} \theta_{\mathrm{s} 2}=16.3^{\circ} ; \theta_{\mathrm{p} 2}=72.7^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=9.7^{\circ} ; \theta_{\mathrm{p} 1}=110.5^{\circ}$ or $\theta_{\mathrm{s} 2}=46.5^{\circ} ; \theta_{\mathrm{p} 2}=69.5^{\circ}$

Subject no. 32

1. $Z=40.00+\mathrm{j} \cdot(29.90) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.001+\mathrm{j} \cdot(0.332)=0.332 \angle 90.1^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.700+\mathrm{j} \cdot 0.790 ; Z=\mathrm{Z}_{0} /(0.700+\mathrm{j} \cdot 0.790)=31.415 \Omega+\mathrm{j} \cdot(-35.4546) \Omega$
3. a) $\mathrm{Pin}=2.40 \mathrm{~mW}=3.802 \mathrm{dBm} ; \mathrm{Pc}=3.802 \mathrm{dBm}-4.05 \mathrm{~dB}=-0.248 \mathrm{dBm}=0.9445 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.40 \mathrm{~mW}-0.9445 \mathrm{~mW}=1.4555 \mathrm{~mW}=1.630 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=1.630 \mathrm{dBm}+9.2 \mathrm{~dB}=10.830 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=10.830 \mathrm{dBm}=12.11 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $10.830 \mathrm{dBm}-2.5 \mathrm{~dB}=8.330 \mathrm{dBm}=6.808 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-0.248 \mathrm{dBm}+10.4 \mathrm{~dB}=10.152 \mathrm{dBm}=10.356 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=10.830 \mathrm{dBm}-22.1 \mathrm{~dB}=-11.270 \mathrm{dBm}=0.075 \mathrm{~mW}$
4. $\Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.250+\mathrm{j} \cdot(0.487)=0.547 \angle 62.819^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=30.2^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.308 ; \theta_{\mathrm{p} 1}=127.4^{\circ}$ and $\theta_{\mathrm{S} 2}=87.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.308 ; \theta_{\mathrm{p} 2}=52.6^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.8 \mathrm{~dB}+10.5 \mathrm{~dB}=$ 20.3 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.14 \mathrm{~dB}=1.300, \mathrm{~F}_{2}=1.05 \mathrm{~dB}=1.274, \mathrm{G}_{1}=9.8 \mathrm{~dB}=9.550, \mathrm{G}_{2}=10.5 \mathrm{~dB}=11.220$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.329$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.300$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.140 \mathrm{~dB}$ and $\mathrm{G}=20.3 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.636<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.205>1 ;|\Delta|=|(0.265)+\mathrm{j} \cdot(0.049)|=0.270<1$
b) $\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.343)+\mathrm{j} \cdot(0.370) ; \Gamma_{\mathrm{S}}=(-0.557)+\mathrm{j} \cdot(-0.599)=0.818 \angle-132.9^{\circ}$
$\mathrm{B}_{2}=0.825 ; \mathrm{C}_{2}=(-0.384)+\mathrm{j} \cdot(-0.112) ; \Gamma_{\mathrm{L}}=(-0.746)+\mathrm{j} \cdot(0.218)=0.777 \angle 163.7^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=138.9^{\circ} ; \theta_{\mathrm{p} 1}=109.4^{\circ}$ or $\theta_{\mathrm{s} 2}=174.0^{\circ} ; \theta_{\mathrm{p} 2}=70.6^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=168.6^{\circ} ; \theta_{\mathrm{p} 1}=112.1^{\circ}$ or $\theta_{\mathrm{s} 2}=27.6^{\circ} ; \theta_{\mathrm{p} 2}=67.9^{\circ}$

Subject no. 33

1. $\mathrm{Z}=20.31+\mathrm{j} \cdot(-29.10) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.214+\mathrm{j} \cdot(-0.503)=0.546 \angle-113.1^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=1.130-\mathrm{j} \cdot 0.840 ; \mathrm{Z}=\mathrm{Z}_{0} /(1.130-\mathrm{j} \cdot 0.840)=28.499 \Omega+\mathrm{j} \cdot(21.1854) \Omega$
3. a) $\mathrm{Pin}=2.00 \mathrm{~mW}=3.010 \mathrm{dBm} ; \mathrm{Pc}=3.010 \mathrm{dBm}-6.90 \mathrm{~dB}=-3.890 \mathrm{dBm}=0.4083 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.00 \mathrm{~mW}-0.4083 \mathrm{~mW}=1.5917 \mathrm{~mW}=2.018 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=2.018 \mathrm{dBm}+6.7 \mathrm{~dB}=8.718 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=8.718 \mathrm{dBm}=7.44 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $8.718 \mathrm{dBm}-2.0 \mathrm{~dB}=6.718 \mathrm{dBm}=4.697 \mathrm{~mW}$
b) $P_{\text {meas }}=P_{C}+G_{2}=-3.890 \mathrm{dBm}+9.5 \mathrm{~dB}=5.610 \mathrm{dBm}=3.639 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\mathrm{out}}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=8.718 \mathrm{dBm}-20.1 \mathrm{~dB}=-11.382 \mathrm{dBm}=0.073 \mathrm{~mW}$
4. $\Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.300+\mathrm{j} \cdot(-0.339)=0.452 \angle-48.511^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=82.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-1.015 ; \theta_{\mathrm{p} 1}=134.6^{\circ}$ and $\theta_{\mathrm{S} 2}=145.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.015 ; \theta_{\mathrm{p} 2}=45.4^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.3 \mathrm{~dB}+11.6 \mathrm{~dB}=$ 20.9 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.16 \mathrm{~dB}=1.306, \mathrm{~F}_{2}=0.94 \mathrm{~dB}=1.242, \mathrm{G}_{1}=9.3 \mathrm{~dB}=8.511, \mathrm{G}_{2}=11.6 \mathrm{~dB}=14.454$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.335$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.263$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.013 \mathrm{~dB}$ and $\mathrm{G}=20.9 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.603<1 ;\left|\mathrm{S}_{22}\right|=0.559<1 ; \mathrm{K}=1.195>1 ;|\Delta|=|(0.229)+\mathrm{j} \cdot(-0.082)|=0.243<1$
b) $\mathrm{B}_{1}=0.992 ; \mathrm{C}_{1}=(-0.198)+\mathrm{j} \cdot(0.443) ; \Gamma_{\mathrm{S}}=(-0.329)+\mathrm{j} \cdot(-0.736)=0.807 \angle-114.1^{\circ}$
$\mathrm{B}_{2}=0.890 ; \mathrm{C}_{2}=(-0.431)+\mathrm{j} \cdot(-0.032) ; \Gamma_{\mathrm{L}}=(-0.784)+\mathrm{j} \cdot(0.059)=0.786 \angle 175.7^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=128.9^{\circ} ; \theta_{\mathrm{p} 1}=110.1^{\circ}$ or $\theta_{\mathrm{s} 2}=165.2^{\circ} ; \theta_{\mathrm{p} 2}=69.9^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=163.1^{\circ} ; \theta_{\mathrm{p} 1}=111.4^{\circ}$ or $\theta_{\mathrm{s} 2}=21.2^{\circ} ; \theta_{\mathrm{p} 2}=68.6^{\circ}$

Subject no. 34

1. $\mathrm{Z}=25.58+\mathrm{j} \cdot(26.48) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.178+\mathrm{j} \cdot(0.413)=0.450 \angle 113.4^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=1.160-\mathrm{j} \cdot 1.010 ; \mathrm{Z}=\mathrm{Z}_{0} /(1.160-\mathrm{j} \cdot 1.010)=24.517 \Omega+\mathrm{j} \cdot(21.3467) \Omega$
3. a) $\mathrm{Pin}=3.65 \mathrm{~mW}=5.623 \mathrm{dBm} ; \mathrm{Pc}=5.623 \mathrm{dBm}-5.85 \mathrm{~dB}=-0.227 \mathrm{dBm}=0.9491 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=3.65 \mathrm{~mW}-0.9491 \mathrm{~mW}=2.7009 \mathrm{~mW}=4.315 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=4.315 \mathrm{dBm}+8.3 \mathrm{~dB}=12.615 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=12.615 \mathrm{dBm}=18.26 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $12.615 \mathrm{dBm}-0.6 \mathrm{~dB}=12.015 \mathrm{dBm}=15.904 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-0.227 \mathrm{dBm}+8.0 \mathrm{~dB}=7.773 \mathrm{dBm}=5.988 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=12.615 \mathrm{dBm}-15.9 \mathrm{~dB}=-3.285 \mathrm{dBm}=0.469 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.270+j \cdot(-0.297)=0.401 \angle-47.755^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $\mathrm{Z}_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=80.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-0.876 ; \theta_{\mathrm{p} 1}=138.8^{\circ}$ and $\theta_{\mathrm{S} 2}=147.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.876 ; \theta_{\mathrm{p} 2}=41.2^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=8.0 \mathrm{~dB}+10.8 \mathrm{~dB}=$ 18.8 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.14 \mathrm{~dB}=1.300, \mathrm{~F}_{2}=0.95 \mathrm{~dB}=1.245, \mathrm{G}_{1}=8.0 \mathrm{~dB}=6.310, \mathrm{G}_{2}=10.8 \mathrm{~dB}=12.023$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.339$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.269$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.036 \mathrm{~dB}$ and $\mathrm{G}=18.8 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.633<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.218>1 ;|\Delta|=|(0.262)+\mathrm{j} \cdot(0.015)|=0.263<1$
b) $\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.319)+\mathrm{j} \cdot(0.390) ; \Gamma_{\mathrm{S}}=(-0.516)+\mathrm{j} \cdot(-0.630)=0.814 \angle-129.3^{\circ}$
$\mathrm{B}_{2}=0.833 ; \mathrm{C}_{2}=(-0.391)+\mathrm{j} \cdot(-0.099) ; \Gamma_{\mathrm{L}}=(-0.750)+\mathrm{j} \cdot(0.190)=0.774 \angle 165.8^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=136.9^{\circ} ; \theta_{\mathrm{p} 1}=109.6^{\circ}$ or $\theta_{\mathrm{s} 2}=172.4^{\circ} ; \theta_{\mathrm{p} 2}=70.4^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=167.5^{\circ} ; \theta_{\mathrm{p} 1}=112.2^{\circ}$ or $\theta_{\mathrm{s} 2}=26.7^{\circ} ; \theta_{\mathrm{p} 2}=67.8^{\circ}$

Subject no. 35

1. $\mathrm{Z}=25.83+\mathrm{j} \cdot(-20.44) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.229+\mathrm{j} \cdot(-0.331)=0.403 \angle-124.7^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.970-\mathrm{j} \cdot 0.775 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.970-\mathrm{j} \cdot 0.775)=31.462 \Omega+\mathrm{j} \cdot(25.1374) \Omega$
3. a) $\mathrm{Pin}=2.85 \mathrm{~mW}=4.548 \mathrm{dBm} ; \mathrm{Pc}=4.548 \mathrm{dBm}-4.25 \mathrm{~dB}=0.298 \mathrm{dBm}=1.0711 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.85 \mathrm{~mW}-1.0711 \mathrm{~mW}=1.7789 \mathrm{~mW}=2.501 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=2.501 \mathrm{dBm}+9.9 \mathrm{~dB}=12.401 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=12.401 \mathrm{dBm}=17.38 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $12.401 \mathrm{dBm}-1.5 \mathrm{~dB}=10.901 \mathrm{dBm}=12.307 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=0.298 \mathrm{dBm}+8.9 \mathrm{~dB}=9.198 \mathrm{dBm}=8.315 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=12.401 \mathrm{dBm}-15.5 \mathrm{~dB}=-3.099 \mathrm{dBm}=0.490 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.356+j \cdot(0.401)=0.536 \angle 48.393^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=37.0^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.271 ; \theta_{\mathrm{p} 1}=128.2^{\circ}$ and $\theta_{\mathrm{S} 2}=94.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.271 ; \theta_{\mathrm{p} 2}=51.8^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $G=G_{1}+G_{2}=8.0 \mathrm{~dB}+11.9 \mathrm{~dB}=$ 19.9 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.20 \mathrm{~dB}=1.318, \mathrm{~F}_{2}=0.98 \mathrm{~dB}=1.253, \mathrm{G}_{1}=8.0 \mathrm{~dB}=6.310, \mathrm{G}_{2}=11.9 \mathrm{~dB}=15.488$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.358$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.274$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.051 \mathrm{~dB}$ and $\mathrm{G}=19.9 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.624<1 ;\left|\mathrm{S}_{22}\right|=0.552<1 ; \mathrm{K}=1.223>1 ;|\Delta|=|(0.251)+\mathrm{j} \cdot(-0.034)|=0.253<1$
b) $\mathrm{B}_{1}=1.021 ; \mathrm{C}_{1}=(-0.273)+\mathrm{j} \cdot(0.418) ; \Gamma_{\mathrm{S}}=(-0.443)+\mathrm{j} \cdot(-0.677)=0.809 \angle-123.2^{\circ}$
$B_{2}=0.851 ; C_{2}=(-0.405)+\mathrm{j} \cdot(-0.074) ; \Gamma_{L}=(-0.762)+\mathrm{j} \cdot(0.140)=0.774 \angle 169.6^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=133.6^{\circ} ; \theta_{\mathrm{p} 1}=110.0^{\circ}$ or $\theta_{\mathrm{s} 2}=169.6^{\circ} ; \theta_{\mathrm{p} 2}=70.0^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=165.6^{\circ} ; \theta_{\mathrm{p} 1}=112.2^{\circ}$ or $\theta_{\mathrm{s} 2}=24.8^{\circ} ; \theta_{\mathrm{p} 2}=67.8^{\circ}$

Subject no. 36

1. $\mathrm{Z}=20.85+\mathrm{j} \cdot(-27.83) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.223+\mathrm{j} \cdot(-0.480)=0.529 \angle-114.9^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $y=1.290+\mathrm{j} \cdot 1.015 ; Z=Z_{0} /(1.290+\mathrm{j} \cdot 1.015)=23.939 \Omega+\mathrm{j} \cdot(-18.8359) \Omega$
3. a) $\operatorname{Pin}=2.35 \mathrm{~mW}=3.711 \mathrm{dBm} ; \mathrm{Pc}=3.711 \mathrm{dBm}-4.50 \mathrm{~dB}=-0.789 \mathrm{dBm}=0.8338 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.35 \mathrm{~mW}-0.8338 \mathrm{~mW}=1.5162 \mathrm{~mW}=1.808 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=1.808 \mathrm{dBm}+6.8 \mathrm{~dB}=8.608 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=8.608 \mathrm{dBm}=7.26 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $8.608 \mathrm{dBm}-2.4 \mathrm{~dB}=6.208 \mathrm{dBm}=4.176 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-0.789 \mathrm{dBm}+9.6 \mathrm{~dB}=8.811 \mathrm{dBm}=7.604 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=8.608 \mathrm{dBm}-18.4 \mathrm{~dB}=-9.792 \mathrm{dBm}=0.105 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.132+j \cdot(0.435)=0.454 \angle 73.134^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=21.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.019 ; \theta_{\mathrm{p} 1}=134.4^{\circ}$ and $\theta_{\mathrm{S} 2}=84.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.019 ; \theta_{\mathrm{p} 2}=45.6^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.5 \mathrm{~dB}+10.2 \mathrm{~dB}=$ 19.7 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.14 \mathrm{~dB}=1.300, \mathrm{~F}_{2}=1.04 \mathrm{~dB}=1.271, \mathrm{G}_{1}=9.5 \mathrm{~dB}=8.913, \mathrm{G}_{2}=10.2 \mathrm{~dB}=10.471$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.331$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.299$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.137 \mathrm{~dB}$ and $\mathrm{G}=19.7 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.637<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.201>1 ;|\Delta|=|(0.265)+\mathrm{j} \cdot(0.060)|=0.272<1$
b) $\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.351)+\mathrm{j} \cdot(0.363) ; \Gamma_{\mathrm{S}}=(-0.570)+\mathrm{j} \cdot(-0.589)=0.819 \angle-134.1^{\circ}$
$\mathrm{B}_{2}=0.823 ; \mathrm{C}_{2}=(-0.381)+\mathrm{j} \cdot(-0.116) ; \Gamma_{\mathrm{L}}=(-0.744)+\mathrm{j} \cdot(0.227)=0.778 \angle 163.0^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=139.5^{\circ} ; \theta_{\mathrm{p} 1}=109.3^{\circ}$ or $\theta_{\mathrm{s} 2}=174.5^{\circ} ; \theta_{\mathrm{p} 2}=70.7^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=169.0^{\circ} ; \theta_{\mathrm{p} 1}=112.0^{\circ}$ or $\theta_{\mathrm{s} 2}=27.9^{\circ} ; \theta_{\mathrm{p} 2}=68.0^{\circ}$

Subject no. 37

1. $\mathrm{Z}=17.33+\mathrm{j} \cdot(15.39) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.411+\mathrm{j} \cdot(0.323)=0.523 \angle 141.9^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=1.010-\mathrm{j} \cdot 0.920 ; \mathrm{Z}=\mathrm{Z}_{0} /(1.010-\mathrm{j} \cdot 0.920)=27.056 \Omega+\mathrm{j} \cdot(24.6451) \Omega$
3. a) $\operatorname{Pin}=4.00 \mathrm{~mW}=6.021 \mathrm{dBm} ; \operatorname{Pc}=6.021 \mathrm{dBm}-6.15 \mathrm{~dB}=-0.129 \mathrm{dBm}=0.9706 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=4.00 \mathrm{~mW}-0.9706 \mathrm{~mW}=3.0294 \mathrm{~mW}=4.814 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=4.814 \mathrm{dBm}+8.4 \mathrm{~dB}=13.214 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=13.214 \mathrm{dBm}=20.96 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $13.214 \mathrm{dBm}-2.1 \mathrm{~dB}=11.114 \mathrm{dBm}=12.923 \mathrm{~mW}$
b) $P_{\text {meas }}=P_{C}+G_{2}=-0.129 \mathrm{dBm}+8.9 \mathrm{~dB}=8.771 \mathrm{dBm}=7.535 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\mathrm{out}}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=13.214 \mathrm{dBm}-21.1 \mathrm{~dB}=-7.886 \mathrm{dBm}=0.163 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.151+j \cdot(0.549)=0.569 \angle 74.598^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{s} 1}=25.0^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.384 ; \theta_{\mathrm{p} 1}=125.9^{\circ}$ and $\theta_{\mathrm{S} 2}=80.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.384 ; \theta_{\mathrm{p} 2}=54.1^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.9 \mathrm{~dB}+11.8 \mathrm{~dB}=$ 21.7 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.14 \mathrm{~dB}=1.300, \mathrm{~F}_{2}=1.09 \mathrm{~dB}=1.285, \mathrm{G}_{1}=9.9 \mathrm{~dB}=9.772, \mathrm{G}_{2}=11.8 \mathrm{~dB}=15.136$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.329$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.305$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.157 \mathrm{~dB}$ and $\mathrm{G}=21.7 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.627<1 ;\left|\mathrm{S}_{22}\right|=0.551<1 ; \mathrm{K}=1.227>1 ;|\Delta|=|(0.253)+\mathrm{j} \cdot(-0.026)|=0.255<1$
b) $\mathrm{B}_{1}=1.025 ; \mathrm{C}_{1}=(-0.284)+\mathrm{j} \cdot(0.413) ; \Gamma_{\mathrm{S}}=(-0.458)+\mathrm{j} \cdot(-0.667)=0.809 \angle-124.5^{\circ}$
$\mathrm{B}_{2}=0.846 ; \mathrm{C}_{2}=(-0.401)+\mathrm{j} \cdot(-0.080) ; \Gamma_{\mathrm{L}}=(-0.758)+\mathrm{j} \cdot(0.151)=0.773 \angle 168.7^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=134.3^{\circ} ; \theta_{\mathrm{p} 1}=109.9^{\circ}$ or $\theta_{\mathrm{s} 2}=170.2^{\circ} ; \theta_{\mathrm{p} 2}=70.1^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=165.9^{\circ} ; \theta_{\mathrm{p} 1}=112.3^{\circ}$ or $\theta_{\mathrm{s} 2}=25.3^{\circ} ; \theta_{\mathrm{p} 2}=67.7^{\circ}$

Subject no. 38

1. $\mathrm{Z}=31.57+\mathrm{j} \cdot(-20.59) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.153+\mathrm{j} \cdot(-0.291)=0.329 \angle-117.7^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.980+\mathrm{j} \cdot 0.970 ; Z=Z_{0} /(0.980+\mathrm{j} \cdot 0.970)=25.772 \Omega+\mathrm{j} \cdot(-25.5089) \Omega$
3. a) $\mathrm{Pin}=1.85 \mathrm{~mW}=2.672 \mathrm{dBm} ; \operatorname{Pc}=2.672 \mathrm{dBm}-4.70 \mathrm{~dB}=-2.028 \mathrm{dBm}=0.6269 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=1.85 \mathrm{~mW}-0.6269 \mathrm{~mW}=1.2231 \mathrm{~mW}=0.875 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=0.875 \mathrm{dBm}+9.0 \mathrm{~dB}=9.875 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=9.875 \mathrm{dBm}=9.72 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $9.875 \mathrm{dBm}-2.5 \mathrm{~dB}=7.375 \mathrm{dBm}=5.464 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-2.028 \mathrm{dBm}+9.7 \mathrm{~dB}=7.672 \mathrm{dBm}=5.850 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=9.875 \mathrm{dBm}-22.7 \mathrm{~dB}=-12.825 \mathrm{dBm}=0.052 \mathrm{~mW}$
4. $\Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.350+\mathrm{j} \cdot(0.403)=0.534 \angle 49.042^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{s} 1}=36.6^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.263 ; \theta_{\mathrm{p} 1}=128.4^{\circ}$ and $\theta_{\mathrm{S} 2}=94.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.263 ; \theta_{\mathrm{p} 2}=51.6^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.8 \mathrm{~dB}+10.4 \mathrm{~dB}=$ 20.2 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.22 \mathrm{~dB}=1.324, \mathrm{~F}_{2}=0.98 \mathrm{~dB}=1.253, \mathrm{G}_{1}=9.8 \mathrm{~dB}=9.550, \mathrm{G}_{2}=10.4 \mathrm{~dB}=10.965$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.351$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.283$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.081 \mathrm{~dB}$ and $\mathrm{G}=20.2 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|S_{11}\right|=0.611<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.146>1 ;|\Delta|=|(-0.060)+\mathrm{j} \cdot(0.264)|=0.271<1$
b) $\mathrm{B}_{1}=1.030 ; \mathrm{C}_{1}=(-0.495)+\mathrm{j} \cdot(0.096) ; \Gamma_{\mathrm{S}}=(-0.798)+\mathrm{j} \cdot(-0.155)=0.813 \angle-169.0^{\circ}$
$\mathrm{B}_{2}=0.824 ; \mathrm{C}_{2}=(-0.233)+\mathrm{j} \cdot(-0.323) ; \Gamma_{\mathrm{L}}=(-0.451)+\mathrm{j} \cdot(0.625)=0.770 \angle 125.8^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=156.7^{\circ} ; \theta_{\mathrm{p} 1}=109.7^{\circ} \underline{\text { or }} \theta_{\mathrm{s} 2}=12.3^{\circ} ; \theta_{\mathrm{p} 2}=70.3^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=7.3^{\circ} ; \theta_{\mathrm{p} 1}=112.5^{\circ}$ or $\theta_{\mathrm{s} 2}=46.9^{\circ} ; \theta_{\mathrm{p} 2}=67.5^{\circ}$

Subject no. 39

1. $Z=31.76+j \cdot(-33.45) ; \Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=-0.048+j \cdot(-0.429)=0.431 \angle-96.4^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.920-\mathrm{j} \cdot 1.225 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.920-\mathrm{j} \cdot 1.225)=19.599 \Omega+\mathrm{j} \cdot(26.0969) \Omega$
3. a) $\operatorname{Pin}=2.05 \mathrm{~mW}=3.118 \mathrm{dBm} ; \operatorname{Pc}=3.118 \mathrm{dBm}-5.10 \mathrm{~dB}=-1.982 \mathrm{dBm}=0.6335 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.05 \mathrm{~mW}-0.6335 \mathrm{~mW}=1.4165 \mathrm{~mW}=1.512 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=1.512 \mathrm{dBm}+9.6 \mathrm{~dB}=11.112 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=11.112 \mathrm{dBm}=12.92 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $11.112 \mathrm{dBm}-1.8 \mathrm{~dB}=9.312 \mathrm{dBm}=8.535 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-1.982 \mathrm{dBm}+8.5 \mathrm{~dB}=6.518 \mathrm{dBm}=4.485 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=11.112 \mathrm{dBm}-21.7 \mathrm{~dB}=-10.588 \mathrm{dBm}=0.087 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.118+j \cdot(0.290)=0.313 \angle 67.902^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=20.2^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-0.659 ; \theta_{\mathrm{p} 1}=146.6^{\circ}$ and $\theta_{\mathrm{S} 2}=91.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=0.659 ; \theta_{\mathrm{p} 2}=33.4^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.6 \mathrm{~dB}+11.3 \mathrm{~dB}=$ 20.9 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.14 \mathrm{~dB}=1.300, \mathrm{~F}_{2}=1.01 \mathrm{~dB}=1.262, \mathrm{G}_{1}=9.6 \mathrm{~dB}=9.120, \mathrm{G}_{2}=11.3 \mathrm{~dB}=13.490$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.329$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.284$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.086 \mathrm{~dB}$ and $\mathrm{G}=20.9 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.630<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.231>1 ;|\Delta|=|(0.255)+\mathrm{j} \cdot(-0.019)|=0.256<1$
b) $\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.294)+\mathrm{j} \cdot(0.408) ; \Gamma_{\mathrm{S}}=(-0.473)+\mathrm{j} \cdot(-0.657)=0.810 \angle-125.8^{\circ}$
$\mathrm{B}_{2}=0.840 ; \mathrm{C}_{2}=(-0.397)+\mathrm{j} \cdot(-0.085) ; \Gamma_{\mathrm{L}}=(-0.754)+\mathrm{j} \cdot(0.162)=0.771 \angle 167.9^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=134.9^{\circ} ; \theta_{\mathrm{p} 1}=109.9^{\circ}$ or $\theta_{\mathrm{s} 2}=170.8^{\circ} ; \theta_{\mathrm{p} 2}=70.1^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=166.3^{\circ} ; \theta_{\mathrm{p} 1}=112.4^{\circ}$ or $\theta_{\mathrm{s} 2}=25.8^{\circ} ; \theta_{\mathrm{p} 2}=67.6^{\circ}$

Subject no. 40

1. $Z=39.00+\mathrm{j} \cdot(-25.45) ; \Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=-0.039+\mathrm{j} \cdot(-0.297)=0.299 \angle-97.4^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.805-\mathrm{j} \cdot 1.050 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.805-\mathrm{j} \cdot 1.050)=22.993 \Omega+\mathrm{j} \cdot(29.9910) \Omega$
3. a) $\operatorname{Pin}=4.00 \mathrm{~mW}=6.021 \mathrm{dBm} ; \mathrm{Pc}=6.021 \mathrm{dBm}-6.85 \mathrm{~dB}=-0.829 \mathrm{dBm}=0.8262 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=4.00 \mathrm{~mW}-0.8262 \mathrm{~mW}=3.1738 \mathrm{~mW}=5.016 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=5.016 \mathrm{dBm}+6.9 \mathrm{~dB}=11.916 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\mathrm{out}, \max }=\mathrm{P}_{\mathrm{A} 1}=11.916 \mathrm{dBm}=15.54 \mathrm{~mW}, \mathrm{P}_{\mathrm{out}, \min }=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $11.916 \mathrm{dBm}-1.9 \mathrm{~dB}=10.016 \mathrm{dBm}=10.037 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-0.829 \mathrm{dBm}+8.4 \mathrm{~dB}=7.571 \mathrm{dBm}=5.716 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=11.916 \mathrm{dBm}-16.1 \mathrm{~dB}=-4.184 \mathrm{dBm}=0.382 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.296+\mathrm{j} \cdot(-0.450)=0.539 \angle-56.612^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $\mathrm{Z}_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=89.6^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.279 ; \theta_{\mathrm{p} 1}=128.0^{\circ}$ and $\theta_{\mathrm{S} 2}=147.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.279 ; \theta_{\mathrm{p} 2}=52.0^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.4 \mathrm{~dB}+11.2 \mathrm{~dB}=$ 20.6 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.24 \mathrm{~dB}=1.330, \mathrm{~F}_{2}=1.08 \mathrm{~dB}=1.282, \mathrm{G}_{1}=9.4 \mathrm{~dB}=8.710, \mathrm{G}_{2}=11.2 \mathrm{~dB}=13.183$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.363$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.307$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.164 \mathrm{~dB}$ and $\mathrm{G}=20.6 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.647<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.100>1 ;|\Delta|=|(-0.129)+\mathrm{j} \cdot(0.249)|=0.280<1$
b) $\mathrm{B}_{1}=1.070 ; \mathrm{C}_{1}=(-0.525)+\mathrm{j} \cdot(-0.059) ; \Gamma_{\mathrm{S}}=(-0.853)+\mathrm{j} \cdot(0.095)=0.858 \angle 173.6^{\circ}$
$\mathrm{B}_{2}=0.773 ; \mathrm{C}_{2}=(-0.209)+\mathrm{j} \cdot(-0.315) ; \Gamma_{\mathrm{L}}=(-0.448)+\mathrm{j} \cdot(0.673)=0.808 \angle 123.6^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=167.7^{\circ} ; \theta_{\mathrm{p} 1}=106.6^{\circ}$ or $\theta_{\mathrm{s} 2}=18.6^{\circ} ; \theta_{\mathrm{p} 2}=73.4^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=10.2^{\circ} ; \theta_{\mathrm{p} 1}=110.0^{\circ}$ or $\theta_{\mathrm{s} 2}=46.2^{\circ} ; \theta_{\mathrm{p} 2}=70.0^{\circ}$

Subject no. 41

1. $\mathrm{Z}=20.83+\mathrm{j} \cdot(-22.44) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.283+\mathrm{j} \cdot(-0.406)=0.495 \angle-124.9^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=1.130-\mathrm{j} \cdot 0.915 ; \mathrm{Z}=\mathrm{Z}_{0} /(1.130-\mathrm{j} \cdot 0.915)=26.725 \Omega+\mathrm{j} \cdot(21.6402) \Omega$
3. a) $\operatorname{Pin}=2.85 \mathrm{~mW}=4.548 \mathrm{dBm} ; \operatorname{Pc}=4.548 \mathrm{dBm}-6.45 \mathrm{~dB}=-1.902 \mathrm{dBm}=0.6454 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.85 \mathrm{~mW}-0.6454 \mathrm{~mW}=2.2046 \mathrm{~mW}=3.433 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=3.433 \mathrm{dBm}+7.1 \mathrm{~dB}=10.533 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=10.533 \mathrm{dBm}=11.31 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $10.533 \mathrm{dBm}-2.7 \mathrm{~dB}=7.833 \mathrm{dBm}=6.072 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-1.902 \mathrm{dBm}+11.2 \mathrm{~dB}=9.298 \mathrm{dBm}=8.508 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=10.533 \mathrm{dBm}-18.1 \mathrm{~dB}=-7.567 \mathrm{dBm}=0.175 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.243+j \cdot(0.338)=0.416 \angle 54.229^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=30.2^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-0.916 ; \theta_{\mathrm{p} 1}=137.5^{\circ}$ and $\theta_{\mathrm{S} 2}=95.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=0.916 ; \theta_{\mathrm{p} 2}=42.5^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.5 \mathrm{~dB}+11.2 \mathrm{~dB}=$ 20.7 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.25 \mathrm{~dB}=1.334, \mathrm{~F}_{2}=0.94 \mathrm{~dB}=1.242, \mathrm{G}_{1}=9.5 \mathrm{~dB}=8.913, \mathrm{G}_{2}=11.2 \mathrm{~dB}=13.183$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.361$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.267$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.028 \mathrm{~dB}$ and $\mathrm{G}=20.7 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.659<1 ;\left|\mathrm{S}_{22}\right|=0.517<1 ; \mathrm{K}=1.074>1 ;|\Delta|=|(-0.182)+\mathrm{j} \cdot(0.231)|=0.294<1$
b) $\mathrm{B}_{1}=1.081 ; \mathrm{C}_{1}=(-0.525)+\mathrm{j} \cdot(-0.105) ; \Gamma_{\mathrm{S}}=(-0.860)+\mathrm{j} \cdot(0.172)=0.877 \angle 168.7^{\circ}$
$\mathrm{B}_{2}=0.747 ; \mathrm{C}_{2}=(-0.180)+\mathrm{j} \cdot(-0.319) ; \Gamma_{\mathrm{L}}=(-0.406)+\mathrm{j} \cdot(0.720)=0.827 \angle 119.4^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=171.3^{\circ} ; \theta_{\mathrm{p} 1}=105.3^{\circ}$ or $\theta_{\mathrm{s} 2}=20.0^{\circ} ; \theta_{\mathrm{p} 2}=74.7^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=13.2^{\circ} ; \theta_{\mathrm{p} 1}=108.8^{\circ}$ or $\theta_{\mathrm{s} 2}=47.4^{\circ} ; \theta_{\mathrm{p} 2}=71.2^{\circ}$

Subject no. 42

1. $\mathrm{Z}=18.60+\mathrm{j} \cdot(16.37) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.379+\mathrm{j} \cdot(0.329)=0.502 \angle 139.1^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.880-\mathrm{j} \cdot 1.205 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.880-\mathrm{j} \cdot 1.205)=19.763 \Omega+\mathrm{j} \cdot(27.0613) \Omega$
3. a) $\mathrm{Pin}=3.15 \mathrm{~mW}=4.983 \mathrm{dBm} ; \mathrm{Pc}=4.983 \mathrm{dBm}-4.75 \mathrm{~dB}=0.233 \mathrm{dBm}=1.0551 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=3.15 \mathrm{~mW}-1.0551 \mathrm{~mW}=2.0949 \mathrm{~mW}=3.212 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=3.212 \mathrm{dBm}+6.5 \mathrm{~dB}=9.712 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=9.712 \mathrm{dBm}=9.36 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $9.712 \mathrm{dBm}-0.9 \mathrm{~dB}=8.812 \mathrm{dBm}=7.606 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=0.233 \mathrm{dBm}+10.6 \mathrm{~dB}=10.833 \mathrm{dBm}=12.115 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=9.712 \mathrm{dBm}-21.9 \mathrm{~dB}=-12.188 \mathrm{dBm}=0.060 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.277+j \cdot(0.334)=0.434 \angle 50.313^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=32.7^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-0.964 ; \theta_{\mathrm{p} 1}=136.1^{\circ}$ and $\theta_{\mathrm{S} 2}=97.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=0.964 ; \theta_{\mathrm{p} 2}=43.9^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.1 \mathrm{~dB}+10.4 \mathrm{~dB}=$ 19.5 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.21 \mathrm{~dB}=1.321, \mathrm{~F}_{2}=1.03 \mathrm{~dB}=1.268, \mathrm{G}_{1}=9.1 \mathrm{~dB}=8.128, \mathrm{G}_{2}=10.4 \mathrm{~dB}=10.965$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.354$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.297$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.129 \mathrm{~dB}$ and $\mathrm{G}=19.5 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.639<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.193>1 ;|\Delta|=|(0.264)+\mathrm{j} \cdot(0.084)|=0.277<1$
b) $\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.366)+\mathrm{j} \cdot(0.348) ; \Gamma_{\mathrm{S}}=(-0.595)+\mathrm{j} \cdot(-0.566)=0.822 \angle-136.4^{\circ}$
$\mathrm{B}_{2}=0.818 ; \mathrm{C}_{2}=(-0.376)+\mathrm{j} \cdot(-0.125) ; \Gamma_{\mathrm{L}}=(-0.740)+\mathrm{j} \cdot(0.245)=0.779 \angle 161.7^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=140.8^{\circ} ; \theta_{\mathrm{p} 1}=109.1^{\circ}$ or $\theta_{\mathrm{s} 2}=175.6^{\circ} ; \theta_{\mathrm{p} 2}=70.9^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=169.8^{\circ} ; \theta_{\mathrm{p} 1}=111.9^{\circ}$ or $\theta_{\mathrm{s} 2}=28.6^{\circ} ; \theta_{\mathrm{p} 2}=68.1^{\circ}$

Subject no. 43

1. $\mathrm{Z}=16.68+\mathrm{j} \cdot(-22.11) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.351+\mathrm{j} \cdot(-0.448)=0.569 \angle-128.1^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.870+\mathrm{j} \cdot 1.140 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.870+\mathrm{j} \cdot 1.140)=21.152 \Omega+\mathrm{j} \cdot(-27.7170) \Omega$
3. a) $\operatorname{Pin}=2.15 \mathrm{~mW}=3.324 \mathrm{dBm} ; \operatorname{Pc}=3.324 \mathrm{dBm}-4.90 \mathrm{~dB}=-1.576 \mathrm{dBm}=0.6957 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.15 \mathrm{~mW}-0.6957 \mathrm{~mW}=1.4543 \mathrm{~mW}=1.626 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=1.626 \mathrm{dBm}+8.6 \mathrm{~dB}=10.226 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=10.226 \mathrm{dBm}=10.54 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $10.226 \mathrm{dBm}-2.3 \mathrm{~dB}=7.926 \mathrm{dBm}=6.204 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-1.576 \mathrm{dBm}+10.3 \mathrm{~dB}=8.724 \mathrm{dBm}=7.455 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=10.226 \mathrm{dBm}-23.7 \mathrm{~dB}=-13.474 \mathrm{dBm}=0.045 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.308+j \cdot(-0.475)=0.567 \angle-57.024^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=90.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-1.375 ; \theta_{\mathrm{p} 1}=126.0^{\circ}$ and $\theta_{\mathrm{S} 2}=146.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.375 ; \theta_{\mathrm{p} 2}=54.0^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=8.9 \mathrm{~dB}+11.5 \mathrm{~dB}=$ 20.4 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.25 \mathrm{~dB}=1.334, \mathrm{~F}_{2}=0.97 \mathrm{~dB}=1.250, \mathrm{G}_{1}=8.9 \mathrm{~dB}=7.762, \mathrm{G}_{2}=11.5 \mathrm{~dB}=14.125$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.366$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.274$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.051 \mathrm{~dB}$ and $\mathrm{G}=20.4 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|S_{11}\right|=0.605<1 ;\left|S_{22}\right|=0.520<1 ; K=1.169>1 ;|\Delta|=|(-0.037)+\mathrm{j} \cdot(0.262)|=0.264<1$
b) $\mathrm{B}_{1}=1.026 ; \mathrm{C}_{1}=(-0.486)+\mathrm{j} \cdot(0.119) ; \Gamma_{\mathrm{S}}=(-0.778)+\mathrm{j} \cdot(-0.191)=0.801 \angle-166.2^{\circ}$
$B_{2}=0.835 ; C_{2}=(-0.242)+\mathrm{j} \cdot(-0.321) ; \Gamma_{L}=(-0.457)+\mathrm{j} \cdot(0.606)=0.759 \angle 127.0^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=154.7^{\circ} ; \theta_{\mathrm{p} 1}=110.5^{\circ} \underline{\text { or }} \theta_{\mathrm{s} 2}=11.5^{\circ} ; \theta_{\mathrm{p} 2}=69.5^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=6.2^{\circ} ; \theta_{\mathrm{p} 1}=113.2^{\circ}$ or $\theta_{\mathrm{s} 2}=46.8^{\circ} ; \theta_{\mathrm{p} 2}=66.8^{\circ}$

Subject no. 44

1. $\mathrm{Z}=24.48+\mathrm{j} \cdot(-20.11) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.251+\mathrm{j} \cdot(-0.338)=0.421 \angle-126.7^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=1.010-\mathrm{j} \cdot 0.920 ; \mathrm{Z}=\mathrm{Z}_{0} /(1.010-\mathrm{j} \cdot 0.920)=27.056 \Omega+\mathrm{j} \cdot(24.6451) \Omega$
3. a) $\operatorname{Pin}=3.45 \mathrm{~mW}=5.378 \mathrm{dBm} ; \operatorname{Pc}=5.378 \mathrm{dBm}-6.25 \mathrm{~dB}=-0.872 \mathrm{dBm}=0.8181 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=3.45 \mathrm{~mW}-0.8181 \mathrm{~mW}=2.6319 \mathrm{~mW}=4.203 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=4.203 \mathrm{dBm}+6.3 \mathrm{~dB}=10.503 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=10.503 \mathrm{dBm}=11.23 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $10.503 \mathrm{dBm}-1.9 \mathrm{~dB}=8.603 \mathrm{dBm}=7.249 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-0.872 \mathrm{dBm}+11.8 \mathrm{~dB}=10.928 \mathrm{dBm}=12.383 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=10.503 \mathrm{dBm}-23.8 \mathrm{~dB}=-13.297 \mathrm{dBm}=0.047 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.116+j \cdot(-0.556)=0.568 \angle-78.170^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=101.4^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.379 ; \theta_{\mathrm{p} 1}=125.9^{\circ}$ and $\theta_{\mathrm{S} 2}=156.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.379 ; \theta_{\mathrm{p} 2}=54.1^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $G=G_{1}+G_{2}=9.8 \mathrm{~dB}+10.0 \mathrm{~dB}=$ 19.8 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.21 \mathrm{~dB}=1.321, \mathrm{~F}_{2}=0.93 \mathrm{~dB}=1.239, \mathrm{G}_{1}=9.8 \mathrm{~dB}=9.550, \mathrm{G}_{2}=10.0 \mathrm{~dB}=10.000$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.346$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.271$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.041 \mathrm{~dB}$ and $\mathrm{G}=19.8 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|S_{11}\right|=0.608<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.157>1 ;|\Delta|=|(-0.048)+\mathrm{j} \cdot(0.263)|=0.267<1$
b) $\mathrm{B}_{1}=1.028 ; \mathrm{C}_{1}=(-0.491)+\mathrm{j} \cdot(0.108) ; \Gamma_{\mathrm{S}}=(-0.788)+\mathrm{j} \cdot(-0.173)=0.807 \angle-167.6^{\circ}$
$\mathrm{B}_{2}=0.829 ; \mathrm{C}_{2}=(-0.238)+\mathrm{j} \cdot(-0.322) ; \Gamma_{\mathrm{L}}=(-0.454)+\mathrm{j} \cdot(0.615)=0.765 \angle 126.4^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=155.7^{\circ} ; \theta_{\mathrm{p} 1}=110.1^{\circ} \underline{\text { or }} \theta_{\mathrm{s} 2}=11.9^{\circ} ; \theta_{\mathrm{p} 2}=69.9^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=6.7^{\circ} ; \theta_{\mathrm{p} 1}=112.8^{\circ}$ or $\theta_{\mathrm{s} 2}=46.8^{\circ} ; \theta_{\mathrm{p} 2}=67.2^{\circ}$

Subject no. 45

1. $\mathrm{Z}=15.52+\mathrm{j} \cdot(-21.02) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.384+\mathrm{j} \cdot(-0.444)=0.587 \angle-130.8^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.740+\mathrm{j} \cdot 1.175 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.740+\mathrm{j} \cdot 1.175)=19.189 \Omega+\mathrm{j} \cdot(-30.4684) \Omega$
3. a) $\mathrm{Pin}=1.65 \mathrm{~mW}=2.175 \mathrm{dBm} ; \operatorname{Pc}=2.175 \mathrm{dBm}-5.60 \mathrm{~dB}=-3.425 \mathrm{dBm}=0.4544 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=1.65 \mathrm{~mW}-0.4544 \mathrm{~mW}=1.1956 \mathrm{~mW}=0.776 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=0.776 \mathrm{dBm}+6.4 \mathrm{~dB}=7.176 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=7.176 \mathrm{dBm}=5.22 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $7.176 \mathrm{dBm}-2.1 \mathrm{~dB}=5.076 \mathrm{dBm}=3.218 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-3.425 \mathrm{dBm}+9.7 \mathrm{~dB}=6.275 \mathrm{dBm}=4.241 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=7.176 \mathrm{dBm}-22.4 \mathrm{~dB}=-15.224 \mathrm{dBm}=0.030 \mathrm{~mW}$
4. $\Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.258+\mathrm{j} \cdot(0.261)=0.367 \angle 45.363^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=33.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-0.789 ; \theta_{\mathrm{p} 1}=141.7^{\circ}$ and $\theta_{\mathrm{S} 2}=101.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=0.789 ; \theta_{\mathrm{p} 2}=38.3^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=8.3 \mathrm{~dB}+11.5 \mathrm{~dB}=$ 19.8 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.20 \mathrm{~dB}=1.318, \mathrm{~F}_{2}=0.91 \mathrm{~dB}=1.233, \mathrm{G}_{1}=8.3 \mathrm{~dB}=6.761, \mathrm{G}_{2}=11.5 \mathrm{~dB}=14.125$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.353$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.256$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=0.989 \mathrm{~dB}$ and $\mathrm{G}=19.8 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|\mathrm{S}_{11}\right|=0.668<1 ;\left|\mathrm{S}_{22}\right|=0.514<1 ; \mathrm{K}=1.052>1 ;|\Delta|=|(-0.229)+\mathrm{j} \cdot(0.205)|=0.308<1$
b) $\mathrm{B}_{1}=1.087 ; \mathrm{C}_{1}=(-0.522)+\mathrm{j} \cdot(-0.139) ; \Gamma_{\mathrm{S}}=(-0.866)+\mathrm{j} \cdot(0.230)=0.896 \angle 165.1^{\circ}$
$\mathrm{B}_{2}=0.723 ; \mathrm{C}_{2}=(-0.153)+\mathrm{j} \cdot(-0.322) ; \Gamma_{\mathrm{L}}=(-0.363)+\mathrm{j} \cdot(0.765)=0.847 \angle 115.4^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=174.3^{\circ} ; \theta_{\mathrm{p} 1}=103.9^{\circ}$ or $\theta_{\mathrm{s} 2}=20.6^{\circ} ; \theta_{\mathrm{p} 2}=76.1^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=16.3^{\circ} ; \theta_{\mathrm{p} 1}=107.4^{\circ}$ or $\theta_{\mathrm{s} 2}=48.4^{\circ} ; \theta_{\mathrm{p} 2}=72.6^{\circ}$

Subject no. 46

1. $\mathrm{Z}=48.00+\mathrm{j} \cdot(-49.64) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.188+\mathrm{j} \cdot(-0.411)=0.452 \angle-65.4^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.815-\mathrm{j} \cdot 1.040 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.815-\mathrm{j} \cdot 1.040)=23.341 \Omega+\mathrm{j} \cdot(29.7853) \Omega$
3. a) $\mathrm{Pin}=3.30 \mathrm{~mW}=5.185 \mathrm{dBm} ; \mathrm{Pc}=5.185 \mathrm{dBm}-4.55 \mathrm{~dB}=0.635 \mathrm{dBm}=1.1575 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=3.30 \mathrm{~mW}-1.1575 \mathrm{~mW}=2.1425 \mathrm{~mW}=3.309 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=3.309 \mathrm{dBm}+8.4 \mathrm{~dB}=11.709 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=11.709 \mathrm{dBm}=14.82 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $11.709 \mathrm{dBm}-1.2 \mathrm{~dB}=10.509 \mathrm{dBm}=11.244 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=0.635 \mathrm{dBm}+9.1 \mathrm{~dB}=9.735 \mathrm{dBm}=9.408 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=11.709 \mathrm{dBm}-19.3 \mathrm{~dB}=-7.591 \mathrm{dBm}=0.174 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=-0.057+j \cdot(-0.414)=0.418 \angle-97.903^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=106.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-0.920 ; \theta_{\mathrm{p} 1}=137.4^{\circ}$ and $\theta_{\mathrm{S} 2}=171.6^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=0.920 ; \theta_{\mathrm{p} 2}=42.6^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $G=G_{1}+G_{2}=9.8 \mathrm{~dB}+10.0 \mathrm{~dB}=$ 19.8 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.16 \mathrm{~dB}=1.306, \mathrm{~F}_{2}=0.93 \mathrm{~dB}=1.239, \mathrm{G}_{1}=9.8 \mathrm{~dB}=9.550, \mathrm{G}_{2}=10.0 \mathrm{~dB}=10.000$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.331$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.269$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.036 \mathrm{~dB}$ and $\mathrm{G}=19.8 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable. $\left|S_{11}\right|=0.606<1 ;\left|S_{22}\right|=0.558<1 ; \mathrm{K}=1.199>1 ;|\Delta|=|(0.232)+\mathrm{j} \cdot(-0.076)|=0.244<1$
b) $\mathrm{B}_{1}=0.996 ; \mathrm{C}_{1}=(-0.209)+\mathrm{j} \cdot(0.440) ; \Gamma_{\mathrm{S}}=(-0.346)+\mathrm{j} \cdot(-0.729)=0.807 \angle-115.4^{\circ}$
$\mathrm{B}_{2}=0.884 ; \mathrm{C}_{2}=(-0.428)+\mathrm{j} \cdot(-0.039) ; \Gamma_{\mathrm{L}}=(-0.782)+\mathrm{j} \cdot(0.071)=0.785 \angle 174.8^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=129.6^{\circ} ; \theta_{\mathrm{p} 1}=110.1^{\circ}$ or $\theta_{\mathrm{s} 2}=165.8^{\circ} ; \theta_{\mathrm{p} 2}=69.9^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=163.4^{\circ} ; \theta_{\mathrm{p} 1}=111.5^{\circ}$ or $\theta_{\mathrm{s} 2}=21.7^{\circ} ; \theta_{\mathrm{p} 2}=68.5^{\circ}$

Subject no. 47

1. $\mathrm{Z}=28.26+\mathrm{j} \cdot(-24.21) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.166+\mathrm{j} \cdot(-0.361)=0.397 \angle-114.7^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.930-\mathrm{j} \cdot 1.070 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.930-\mathrm{j} \cdot 1.070)=23.137 \Omega+\mathrm{j} \cdot(26.6196) \Omega$
3. a) $\operatorname{Pin}=2.35 \mathrm{~mW}=3.711 \mathrm{dBm} ; \operatorname{Pc}=3.711 \mathrm{dBm}-5.65 \mathrm{~dB}=-1.939 \mathrm{dBm}=0.6398 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=2.35 \mathrm{~mW}-0.6398 \mathrm{~mW}=1.7102 \mathrm{~mW}=2.330 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=2.330 \mathrm{dBm}+7.1 \mathrm{~dB}=9.430 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out,max }}=\mathrm{P}_{\mathrm{A} 1}=9.430 \mathrm{dBm}=8.77 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $9.430 \mathrm{dBm}-1.5 \mathrm{~dB}=7.930 \mathrm{dBm}=6.209 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-1.939 \mathrm{dBm}+9.9 \mathrm{~dB}=7.961 \mathrm{dBm}=6.253 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=9.430 \mathrm{dBm}-21.6 \mathrm{~dB}=-12.170 \mathrm{dBm}=0.061 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.290+j \cdot(-0.531)=0.605 \angle-61.399^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $\mathrm{Z}_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=94.3^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.519 ; \theta_{\mathrm{p} 1}=123.4^{\circ}$ and $\theta_{\mathrm{S} 2}=147.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.519 ; \theta_{\mathrm{p} 2}=56.6^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=8.2 \mathrm{~dB}+10.9 \mathrm{~dB}=$ 19.1 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.19 \mathrm{~dB}=1.315, \mathrm{~F}_{2}=1.04 \mathrm{~dB}=1.271, \mathrm{G}_{1}=8.2 \mathrm{~dB}=6.607, \mathrm{G}_{2}=10.9 \mathrm{~dB}=12.303$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.356$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.296$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.127 \mathrm{~dB}$ and $\mathrm{G}=19.1 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|S_{11}\right|=0.599<1 ;\left|S_{22}\right|=0.520<1 ; K=1.191>1 ;|\Delta|=|(-0.015)+\mathrm{j} \cdot(0.257)|=0.258<1$
b) $\mathrm{B}_{1}=1.022 ; \mathrm{C}_{1}=(-0.476)+\mathrm{j} \cdot(0.142) ; \Gamma_{\mathrm{S}}=(-0.756)+\mathrm{j} \cdot(-0.226)=0.789 \angle-163.4^{\circ}$
$\mathrm{B}_{2}=0.845 ; \mathrm{C}_{2}=(-0.251)+\mathrm{j} \cdot(-0.318) ; \Gamma_{\mathrm{L}}=(-0.464)+\mathrm{j} \cdot(0.588)=0.749 \angle 128.3^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=152.7^{\circ} ; \theta_{\mathrm{p} 1}=111.3^{\circ}$ or $\theta_{\mathrm{s} 2}=10.6^{\circ} ; \theta_{\mathrm{p} 2}=68.7^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=5.1^{\circ} ; \theta_{\mathrm{p} 1}=113.9^{\circ}$ or $\theta_{\mathrm{s} 2}=46.6^{\circ} ; \theta_{\mathrm{p} 2}=66.1^{\circ}$

Subject no. 48

1. $\mathrm{Z}=40.00+\mathrm{j} \cdot(-52.46) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.171+\mathrm{j} \cdot(-0.483)=0.513 \angle-70.6^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=1.295+\mathrm{j} \cdot 1.230 ; \mathrm{Z}=\mathrm{Z}_{0} /(1.295+\mathrm{j} \cdot 1.230)=20.298 \Omega+\mathrm{j} \cdot(-19.2795) \Omega$
3. a) $\mathrm{Pin}=3.05 \mathrm{~mW}=4.843 \mathrm{dBm} ; \operatorname{Pc}=4.843 \mathrm{dBm}-5.45 \mathrm{~dB}=-0.607 \mathrm{dBm}=0.8696 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=3.05 \mathrm{~mW}-0.8696 \mathrm{~mW}=2.1804 \mathrm{~mW}=3.385 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=3.385 \mathrm{dBm}+8.6 \mathrm{~dB}=11.985 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=11.985 \mathrm{dBm}=15.80 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $11.985 \mathrm{dBm}-1.2 \mathrm{~dB}=10.785 \mathrm{dBm}=11.982 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-0.607 \mathrm{dBm}+8.7 \mathrm{~dB}=8.093 \mathrm{dBm}=6.446 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=11.985 \mathrm{dBm}-22.2 \mathrm{~dB}=-10.215 \mathrm{dBm}=0.095 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.214+j \cdot(0.202)=0.294 \angle 43.374^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=31.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-0.615 ; \theta_{\mathrm{p} 1}=148.4^{\circ}$ and $\theta_{\mathrm{S} 2}=104.8^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=0.615 ; \theta_{\mathrm{p} 2}=31.6^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=9.4 \mathrm{~dB}+11.0 \mathrm{~dB}=$ 20.4 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.13 \mathrm{~dB}=1.297, \mathrm{~F}_{2}=0.93 \mathrm{~dB}=1.239, \mathrm{G}_{1}=9.4 \mathrm{~dB}=8.710, \mathrm{G}_{2}=11.0 \mathrm{~dB}=12.589$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.325$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.262$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.012 \mathrm{~dB}$ and $\mathrm{G}=20.4 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.632<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.223>1 ;|\Delta|=|(0.261)+\mathrm{j} \cdot(0.003)|=0.261<1$
b) $\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.311)+\mathrm{j} \cdot(0.396) ; \Gamma_{\mathrm{S}}=(-0.502)+\mathrm{j} \cdot(-0.639)=0.813 \angle-128.1^{\circ}$
$\mathrm{B}_{2}=0.835 ; \mathrm{C}_{2}=(-0.393)+\mathrm{j} \cdot(-0.094) ; \Gamma_{\mathrm{L}}=(-0.752)+\mathrm{j} \cdot(0.181)=0.773 \angle 166.5^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=136.2^{\circ} ; \theta_{\mathrm{p} 1}=109.7^{\circ}$ or $\theta_{\mathrm{s} 2}=171.9^{\circ} ; \theta_{\mathrm{p} 2}=70.3^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=167.1^{\circ} ; \theta_{\mathrm{p} 1}=112.3^{\circ}$ or $\theta_{\mathrm{s} 2}=26.4^{\circ} ; \theta_{\mathrm{p} 2}=67.7^{\circ}$

Subject no. 49

1. $\mathrm{Z}=29.17+\mathrm{j} \cdot(-17.77) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.202+\mathrm{j} \cdot(-0.270)=0.337 \angle-126.9^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $y=0.765+\mathrm{j} \cdot 1.135 ; Z=Z_{0} /(0.765+\mathrm{j} \cdot 1.135)=20.417 \Omega+\mathrm{j} \cdot(-30.2917) \Omega$
3. a) $\mathrm{Pin}=1.85 \mathrm{~mW}=2.672 \mathrm{dBm} ; \operatorname{Pc}=2.672 \mathrm{dBm}-4.35 \mathrm{~dB}=-1.678 \mathrm{dBm}=0.6795 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=1.85 \mathrm{~mW}-0.6795 \mathrm{~mW}=1.1705 \mathrm{~mW}=0.684 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=0.684 \mathrm{dBm}+7.3 \mathrm{~dB}=7.984 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, } \max }=\mathrm{P}_{\mathrm{A} 1}=7.984 \mathrm{dBm}=6.29 \mathrm{~mW}, \mathrm{P}_{\text {out, min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $7.984 \mathrm{dBm}-2.9 \mathrm{~dB}=5.084 \mathrm{dBm}=3.224 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=-1.678 \mathrm{dBm}+11.6 \mathrm{~dB}=9.922 \mathrm{dBm}=9.821 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=7.984 \mathrm{dBm}-19.4 \mathrm{~dB}=-11.416 \mathrm{dBm}=0.072 \mathrm{~mW}$
4. $\Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=0.232+\mathrm{j} \cdot(0.467)=0.522 \angle 63.627^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=28.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.223 ; \theta_{\mathrm{p} 1}=129.3^{\circ}$ and $\theta_{\mathrm{S} 2}=87.5^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.223 ; \theta_{\mathrm{p} 2}=50.7^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=8.2 \mathrm{~dB}+11.8 \mathrm{~dB}=$ 20.0 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.24 \mathrm{~dB}=1.330, \mathrm{~F}_{2}=1.03 \mathrm{~dB}=1.268, \mathrm{G}_{1}=8.2 \mathrm{~dB}=6.607, \mathrm{G}_{2}=11.8 \mathrm{~dB}=15.136$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.371$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.289$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.104 \mathrm{~dB}$ and $\mathrm{G}=20.0 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.635<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.209>1 ;|\Delta|=|(0.265)+\mathrm{j} \cdot(0.037)|=0.267<1$
b) $\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.335)+\mathrm{j} \cdot(0.377) ; \Gamma_{\mathrm{S}}=(-0.543)+\mathrm{j} \cdot(-0.610)=0.817 \angle-131.7^{\circ}$
$\mathrm{B}_{2}=0.828 ; \mathrm{C}_{2}=(-0.386)+\mathrm{j} \cdot(-0.108) ; \Gamma_{\mathrm{L}}=(-0.748)+\mathrm{j} \cdot(0.208)=0.776 \angle 164.4^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=138.2^{\circ} ; \theta_{\mathrm{p} 1}=109.4^{\circ}$ or $\theta_{\mathrm{s} 2}=173.5^{\circ} ; \theta_{\mathrm{p} 2}=70.6^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=168.2^{\circ} ; \theta_{\mathrm{p} 1}=112.1^{\circ}$ or $\theta_{\mathrm{s} 2}=27.3^{\circ} ; \theta_{\mathrm{p} 2}=67.9^{\circ}$

Subject no. 50

1. $\mathrm{Z}=25.00+\mathrm{j} \cdot(-28.46) ; \Gamma=\left(\mathrm{Z}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}+\mathrm{Z}_{0}\right)=-0.166+\mathrm{j} \cdot(-0.442)=0.472 \angle-110.5^{\circ}$, plot point in complex plane either with rectangular coordinates or polar coordinates
2. $\mathrm{y}=0.745+\mathrm{j} \cdot 1.165 ; \mathrm{Z}=\mathrm{Z}_{0} /(0.745+\mathrm{j} \cdot 1.165)=19.480 \Omega+\mathrm{j} \cdot(-30.4615) \Omega$
3. a) $\operatorname{Pin}=3.95 \mathrm{~mW}=5.966 \mathrm{dBm} ; \mathrm{Pc}=5.966 \mathrm{dBm}-4.65 \mathrm{~dB}=1.316 \mathrm{dBm}=1.3539 \mathrm{~mW}$

Ideal lossless coupler: $\mathrm{P}_{\mathrm{T}}=3.95 \mathrm{~mW}-1.3539 \mathrm{~mW}=2.5961 \mathrm{~mW}=4.143 \mathrm{dBm}$; after amplifier G_{1} we have $\mathrm{P}_{\mathrm{A} 1}=\mathrm{P}_{\mathrm{T}}+\mathrm{G}_{1}=4.143 \mathrm{dBm}+7.4 \mathrm{~dB}=11.543 \mathrm{dBm}$; inside the filter passband maximum attenuation introduced by the filter is equal to the ripple, $\mathrm{P}_{\text {out, max }}=\mathrm{P}_{\mathrm{A} 1}=11.543 \mathrm{dBm}=14.27 \mathrm{~mW}, \mathrm{P}_{\text {out,min }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{R}=$ $11.543 \mathrm{dBm}-2.3 \mathrm{~dB}=9.243 \mathrm{dBm}=8.401 \mathrm{~mW}$
b) $\mathrm{P}_{\text {meas }}=\mathrm{P}_{\mathrm{C}}+\mathrm{G}_{2}=1.316 \mathrm{dBm}+8.2 \mathrm{~dB}=9.516 \mathrm{dBm}=8.945 \mathrm{~mW}$
c) Outside the passband $\mathrm{P}_{\text {out }}=\mathrm{P}_{\mathrm{A} 1}-\mathrm{A}=11.543 \mathrm{dBm}-23.7 \mathrm{~dB}=-12.157 \mathrm{dBm}=0.061 \mathrm{~mW}$
4. $\Gamma=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=0.212+j \cdot(0.264)=0.338 \angle 51.230^{\circ}$;
b) Complex calculus from L7/L8, 2 solutions for the match, $Z_{0}=50 \Omega$ lines $\theta_{\mathrm{S} 1}=29.3^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-0.719 ; \theta_{\mathrm{p} 1}=144.3^{\circ}$ and $\theta_{\mathrm{S} 2}=99.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=0.719 ; \theta_{\mathrm{p} 2}=35.7^{\circ}$
c) Obviously the shunt stub θ_{p} is towards the 50 ohm source
5. In any order we cascade the two devices the gain will be the same $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=8.4 \mathrm{~dB}+11.7 \mathrm{~dB}=$ 20.1 dB . The "best" placement for the two devices refers to the minimum noise factor.
$\mathrm{F}_{1}=1.29 \mathrm{~dB}=1.346, \mathrm{~F}_{2}=1.04 \mathrm{~dB}=1.271, \mathrm{G}_{1}=8.4 \mathrm{~dB}=6.918, \mathrm{G}_{2}=11.7 \mathrm{~dB}=14.791$
We compute $\mathrm{F}_{12}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}=1.385$ and $\mathrm{F}_{21}=\mathrm{F}_{2}+\left(\mathrm{F}_{1}-1\right) / \mathrm{G}_{2}=1.294$, we obtain a lower noise factor when we first use device 2 in the cascade. The result is $\mathrm{F}=1.119 \mathrm{~dB}$ and $\mathrm{G}=20.1 \mathrm{~dB}$
6. a) The match for maximum gain is available only if the transistor is unconditionally stable.
$\left|\mathrm{S}_{11}\right|=0.614<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.136>1 ;|\Delta|=|(-0.072)+\mathrm{j} \cdot(0.264)|=0.274<1$
b) $\mathrm{B}_{1}=1.031 ; \mathrm{C}_{1}=(-0.499)+\mathrm{j} \cdot(0.084) ; \Gamma_{\mathrm{S}}=(-0.808)+\mathrm{j} \cdot(-0.136)=0.819 \angle-170.5^{\circ}$
$\mathrm{B}_{2}=0.818 ; \mathrm{C}_{2}=(-0.229)+\mathrm{j} \cdot(-0.324) ; \Gamma_{\mathrm{L}}=(-0.448)+\mathrm{j} \cdot(0.634)=0.777 \angle 125.2^{\circ}$
c) towards the source: $\theta_{\mathrm{s} 1}=157.7^{\circ} ; \theta_{\mathrm{p} 1}=109.3^{\circ} \underline{\text { or }} \theta_{\mathrm{s} 2}=12.7^{\circ} ; \theta_{\mathrm{p} 2}=70.7^{\circ}$
toward the load: $\theta_{\mathrm{s} 1}=7.8^{\circ} ; \theta_{\mathrm{p} 1}=112.1^{\circ}$ or $\theta_{\mathrm{s} 2}=46.9^{\circ} ; \theta_{\mathrm{p} 2}=67.9^{\circ}$

