Subject no. 1

1. $\mathrm{Z}_{\mathrm{L}}=37 \Omega$ paralel with 1.15 nH inductor at 7.1 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0270 \mathrm{~S}+\mathrm{j} \cdot(-$ $0.0195) \mathrm{S}, \mathrm{y}=\mathrm{Y}_{\mathrm{L}} \cdot 50 \Omega=1.351+\mathrm{j} \cdot(-0.975)$ then b$) \mathrm{z}=1 / \mathrm{y}=0.487+\mathrm{j} \cdot(0.351$
2. a) $\Gamma=(z-1) /(z+1)=(0.880+j \cdot 1.020-1) /(0.880+\mathrm{j} \cdot 1.020+1)$
$\Gamma=(0.178)+\mathrm{j} \cdot(0.446) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.480 \angle 68.2^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 26Ω load to a 50Ω source at $f_{1}=7.3 \mathrm{GHz}$ so $Z_{1}=$ $\sqrt{ }\left(Z_{0} \cdot Z_{L}\right)=36.056 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $\mathrm{f}_{2}=2.9 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot 1_{1}=2 \cdot \pi / \lambda_{2} \cdot 1_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.199 \cdot \pi=0.624 ; \tan (\beta \cdot 1)=0.720$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=31.10 \Omega+\mathrm{j} \cdot(9.81) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=22.571 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 7)=2 \pi / 7 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=1.065 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.640 \angle-154.1^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.550 \angle 143.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=141.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-1.666 ; \theta_{\mathrm{p} 1}=121.0^{\circ}$ or $\theta_{\mathrm{S} 2}=12.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.666 ; \theta_{\mathrm{p} 2}=59.0^{\circ}$
output: $\theta_{\mathrm{L} 1}=170.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.317 ; \theta_{\mathrm{p} 1}=127.2^{\circ}$ or $\theta_{\mathrm{L} 2}=46.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.317 ; \theta_{\mathrm{p} 2}=52.8^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load

$\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.434=1.565 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.059=4.856 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.289 \mathrm{~dB}+4.856 \mathrm{~dB}+1.565 \mathrm{~dB}=8.709 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=135 \mu \mathrm{~W}=-8.697 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-8.697 \mathrm{dBm}+8.709 \mathrm{~dB}=0.012 \mathrm{dBm}=1.003 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.640<1 ;\left|S_{22}\right|=$ $0.550<1 ; \mathrm{K}=1.177>1 ;|\Delta|=|(0.229)+\mathrm{j} \cdot(0.174)|=0.288<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 2

1. $\mathrm{Z}_{\mathrm{L}}=50 \Omega$ series with 0.78 nH inductor at 8.5 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=50.00 \Omega+$ $j \cdot(41.66) \Omega, z=Z_{L} / 50 \Omega=1.000+j \cdot(0.833)$ then a) $y=1 / z=0.590+j \cdot(-0.492)$
2. a) $\Gamma=(z-1) /(z+1)=(0.730-j \cdot 0.990-1) /(0.730-j \cdot 0.990+1)$
$\Gamma=(0.129)+\mathrm{j} \cdot(-0.498) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.515 \angle-75.5^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 50Ω load to a 50Ω source at $f_{1}=9.0 \mathrm{GHz}$ so $Z_{1}=$ $\sqrt{ }\left(Z_{0} \cdot Z_{L}\right)=50.000 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=3.6 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.200 \cdot \pi=0.628 ; \tan (\beta \cdot 1)=0.727$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=50.00 \Omega+\mathrm{j} \cdot(0.00) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=20.156 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot 1)=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot 1=$ $2 \pi / \lambda \cdot(\lambda / 10)=2 \pi / 10 ; \mathrm{C}=\operatorname{tg}(\beta \cdot \mathrm{l}) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.463 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.692 \angle 167.8^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.560 \angle 118.3^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=163.0^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.917 ; \theta_{\mathrm{p} 1}=117.5^{\circ}$ or $\theta_{\mathrm{S} 2}=29.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.917 ; \theta_{\mathrm{p} 2}=62.5^{\circ}$
output: $\theta_{\mathrm{L} 1}=2.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.352 ; \theta_{\mathrm{p} 1}=126.5^{\circ}$ or $\theta_{\mathrm{L} 2}=58.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.352 ; \theta_{\mathrm{p} 2}=53.5^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $G_{S \max }=1 /\left(1-\left|S_{11}\right|^{2}\right)=1.919=2.830 \mathrm{~dB}$; the gain from load match:
$\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.457=1.634 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.865=5.872 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.830 \mathrm{~dB}+5.872 \mathrm{~dB}+1.634 \mathrm{~dB}=10.336 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=135 \mu \mathrm{~W}=-8.697 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-8.697 \mathrm{dBm}+10.336 \mathrm{~dB}=1.640 \mathrm{dBm}=1.459 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.692<1 ;\left|S_{22}\right|=$ $0.560<1 ; \mathrm{K}=1.062>1 ;|\Delta|=|(-0.049)+\mathrm{j} \cdot(0.352)|=0.356<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 3

1. $\mathrm{Z}_{\mathrm{L}}=25 \Omega$ series with 1.00 nH inductor at 9.4 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=25.00 \Omega+$ $j \cdot(59.06) \Omega, z=Z_{L} / 50 \Omega=0.500+j \cdot(1.181)$ then a) $y=1 / z=0.304+j \cdot(-0.718)$
2. a) $\Gamma=(z-1) /(z+1)=(0.895-j \cdot 0.750-1) /(0.895-j \cdot 0.750+1)$
$\Gamma=(0.088)+\mathrm{j} \cdot(-0.361) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.372 \angle-76.4^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 41Ω load to a 50Ω source at $f_{1}=6.7 \mathrm{GHz}$ so $Z_{1}=$ $\sqrt{ }\left(Z_{0} \cdot Z_{L}\right)=45.277 \Omega$ and the line physical length is $l_{1}=\lambda_{1} / 4=c / 4 / f_{1}$.
At $f_{2}=3.9 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.291 \cdot \pi=0.914 ; \tan (\beta \cdot 1)=1.298$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=46.22 \Omega+\mathrm{j} \cdot(4.44) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=35.806 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-j \cdot Z_{0} \cdot \operatorname{ctg}(\beta \cdot 1)=1 /(j \cdot \omega \cdot C)=-j \cdot 1 / \omega / C ; \beta \cdot 1=$ $2 \pi / \lambda \cdot(\lambda / 9)=2 \pi / 9 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.266 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.688 \angle-103.7^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.298 \angle-153.2^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=118.6^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.896 ; \theta_{\mathrm{p} 1}=117.8^{\circ}$ or $\theta_{\mathrm{S} 2}=165.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.896 ; \theta_{\mathrm{p} 2}=62.2^{\circ}$
output: $\theta_{\mathrm{L} 1}=130.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-0.624 ; \theta_{\mathrm{p} 1}=148.0^{\circ}$ or $\theta_{\mathrm{L} 2}=22.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=0.624 ; \theta_{\mathrm{p} 2}=32.0^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\mathrm{Smax}}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.899=2.785 \mathrm{~dB}$; the gain from load match:
$\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.097=0.404 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=2.843=4.537 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{S} \max }+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.785 \mathrm{~dB}+4.537 \mathrm{~dB}+0.404 \mathrm{~dB}=7.726 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=105 \mu \mathrm{~W}=-9.788 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-9.788 \mathrm{dBm}+7.726 \mathrm{~dB}=-2.062 \mathrm{dBm}=0.622 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.688<1 ;\left|S_{22}\right|=$ $0.298<1 ; \mathrm{K}=1.118>1 ;|\Delta|=|(-0.259)+\mathrm{j} \cdot(-0.109)|=0.281<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 4

1. $\mathrm{Z}_{\mathrm{L}}=63 \Omega$ paralel with 1.13 nH inductor at 9.5 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0159 \mathrm{~S}+\mathrm{j} \cdot(-$ $0.0148) S, y=Y_{L} \cdot 50 \Omega=0.794+j \cdot(-0.741)$ then $\left.b\right) z=1 / y=0.673+j \cdot(0.629$
2. a) $\Gamma=(z-1) /(z+1)=(1.025-j \cdot 1.000-1) /(1.025-j \cdot 1.000+1)$
$\Gamma=(0.206)+\mathrm{j} \cdot(-0.392) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.443 \angle-62.3^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 37Ω load to a 50Ω source at $f_{1}=7.0 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(Z_{0} \cdot Z_{L}\right)=43.012 \Omega$ and the line physical length is $l_{1}=\lambda_{1} / 4=c / 4 / f_{1}$.
At $f_{2}=4.0 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.286 \cdot \pi=0.898 ; \tan (\beta \cdot 1)=1.254$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=43.99 \Omega+\mathrm{j} \cdot(6.48) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=26.049 \Omega$.

For a section of an open-circuited transmission line $Z_{i n}=-j \cdot Z_{0} \cdot \operatorname{ctg}(\beta \cdot 1)=1 /(j \cdot \omega \cdot C)=-j \cdot 1 / \omega / C ; \beta \cdot 1=$ $2 \pi / \lambda \cdot(\lambda / 7)=2 \pi / 7 ; \mathrm{C}=\operatorname{tg}(\beta \cdot \mathrm{l}) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.594 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.660 \angle-173.0^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.555 \angle 135.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=152.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.757 ; \theta_{\mathrm{p} 1}=119.6^{\circ}$ or $\theta_{\mathrm{S} 2}=20.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.757 ; \theta_{\mathrm{p} 2}=60.4^{\circ}$
output: $\theta_{\mathrm{L} 1}=174.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.334 ; \theta_{\mathrm{p} 1}=126.8^{\circ}$ or $\theta_{\mathrm{L} 2}=50.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.334 ; \theta_{\mathrm{p} 2}=53.2^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load

$\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.445=1.599 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.276=5.154 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{L} \max }=2.484 \mathrm{~dB}+5.154 \mathrm{~dB}+1.599 \mathrm{~dB}=9.237 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=130 \mu \mathrm{~W}=-8.861 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-8.861 \mathrm{dBm}+9.237 \mathrm{~dB}=0.376 \mathrm{dBm}=1.090 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.660<1$; $\left|S_{22}\right|=$ $0.555<1 ; \mathrm{K}=1.125>1 ;|\Delta|=|(0.144)+\mathrm{j} \cdot(0.299)|=0.332<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 5

1. $\mathrm{Z}_{\mathrm{L}}=61 \Omega$ series with 1.32 nH inductor at 6.5 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=61.00 \Omega+$ $\mathrm{j} \cdot(53.91) \Omega, \mathrm{z}=\mathrm{Z}_{\mathrm{L}} / 50 \Omega=1.220+\mathrm{j} \cdot(1.078)$ then a) $\mathrm{y}=1 / \mathrm{z}=0.460+\mathrm{j} \cdot(-0.407)$
2. a) $\Gamma=(z-1) /(z+1)=(1.290+j \cdot 0.970-1) /(1.290+j \cdot 0.970+1)$
$\Gamma=(0.259)+\mathrm{j} \cdot(0.314) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.407 \angle 50.4^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 35Ω load to a 50Ω source at $\mathrm{f}_{1}=7.1 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=41.833 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=2.2 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot 1_{1}=2 \cdot \pi / \lambda_{2} \cdot 1_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.155 \cdot \pi=0.487 ; \tan (\beta \cdot \mathrm{l})=0.529$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=37.46 \Omega+\mathrm{j} \cdot(5.55) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=24.027 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-j \cdot Z_{0} \cdot \operatorname{ctg}(\beta \cdot 1)=1 /(j \cdot \omega \cdot C)=-j \cdot 1 / \omega / C ; \beta \cdot l=$ $2 \pi / \lambda \cdot(\lambda / 13)=2 \pi / 13 ; \mathrm{C}=\operatorname{tg}(\beta \cdot \mathrm{l}) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.241 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.680 \angle 172.0^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.560 \angle 128.2^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=160.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-1.855 ; \theta_{\mathrm{p} 1}=118.3^{\circ}$ or $\theta_{\mathrm{S} 2}=27.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.855 ; \theta_{\mathrm{p} 2}=61.7^{\circ}$
output: $\theta_{\mathrm{L} 1}=177.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.352 ; \theta_{\mathrm{p} 1}=126.5^{\circ}$ or $\theta_{\mathrm{L} 2}=53.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.352 ; \theta_{\mathrm{p} 2}=53.5^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $G_{S m a x}=1 /\left(1-\left|S_{11}\right|^{2}\right)=1.860=2.695 \mathrm{~dB}$; the gain from load match:
$\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.457=1.634 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.501=5.441 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.695 \mathrm{~dB}+5.441 \mathrm{~dB}+1.634 \mathrm{~dB}=9.771 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=140 \mu \mathrm{~W}=-8.539 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-8.539 \mathrm{dBm}+9.771 \mathrm{~dB}=1.232 \mathrm{dBm}=1.328 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.680<1 ;\left|S_{22}\right|=$ $0.560<1 ; \mathrm{K}=1.093>1 ;|\Delta|=|(0.031)+\mathrm{j} \cdot(0.367)|=0.369<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 6

1. $\mathrm{Z}_{\mathrm{L}}=25 \Omega$ paralel with 0.56 pF capacitor at 7.2 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0400 \mathrm{~S}+$ $\mathrm{j} \cdot(0.0253) \mathrm{S}, \mathrm{y}=\mathrm{Y}_{\mathrm{L}} \cdot 50 \Omega=2.000+\mathrm{j} \cdot(1.267)$ then b$) \mathrm{z}=1 / \mathrm{y}=0.357+\mathrm{j} \cdot(-0.226$
2. a) $\Gamma=(z-1) /(z+1)=(0.740-j \cdot 1.055-1) /(0.740-j \cdot 1.055+1)$
$\Gamma=(0.160)+\mathrm{j} \cdot(-0.510) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.534 \angle-72.6^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 50Ω load to a 50Ω source at $\mathrm{f}_{1}=7.7 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=50.000 \Omega$ and the line physical length is $1_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=2.4 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.156 \cdot \pi=0.490 ; \tan (\beta \cdot 1)=0.533$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=50.00 \Omega+\mathrm{j} \cdot(0.00) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=25.908 \Omega$.

For a section of an open-circuited transmission line $Z_{i n}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot 1)=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 6)=2 \pi / 6 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=1.400 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.680 \angle 172.0^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.560 \angle 130.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=160.4^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.855 ; \theta_{\mathrm{p} 1}=118.3^{\circ}$ or $\theta_{\mathrm{S} 2}=27.6^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.855 ; \theta_{\mathrm{p} 2}=61.7^{\circ}$
output: $\theta_{\mathrm{L} 1}=177.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.352 ; \theta_{\mathrm{p} 1}=126.5^{\circ}$ or $\theta_{\mathrm{L} 2}=53.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.352 ; \theta_{\mathrm{p} 2}=53.5^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\mathrm{Smax}}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.860=2.695 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.457=1.634 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.437=5.362 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.695 \mathrm{~dB}+5.362 \mathrm{~dB}+1.634 \mathrm{~dB}=9.692 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=75 \mu \mathrm{~W}=-11.249 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-11.249 \mathrm{dBm}+9.692 \mathrm{~dB}=-1.558 \mathrm{dBm}=0.699 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|\mathrm{S}_{11}\right|=0.680<1$; $\left|\mathrm{S}_{22}\right|=$ $0.560<1 ; K=1.091>1 ;|\Delta|=|(0.042)+\mathfrak{j} \cdot(0.372)|=0.374<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 7

1. $\mathrm{Z}_{\mathrm{L}}=58 \Omega$ paralel with 0.26 pF capacitor at 9.6 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0172 \mathrm{~S}+$ $j \cdot(0.0157) S, y=Y_{L} \cdot 50 \Omega=0.862+j \cdot(0.784)$ then $\left.b\right) z=1 / y=0.635+j \cdot(-0.577$
2. a) $\Gamma=(z-1) /(z+1)=(0.725-j \cdot 0.800-1) /(0.725-j \cdot 0.800+1)$
$\Gamma=(0.046)+\mathrm{j} \cdot(-0.443) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.445 \angle-84.1^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 43Ω load to a 50Ω source at $\mathrm{f}_{1}=9.5 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(Z_{0} \cdot Z_{L}\right)=46.368 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=2.0 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.105 \cdot \pi=0.331 ; \tan (\beta \cdot 1)=0.343$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=43.64 \Omega+\mathrm{j} \cdot(2.02) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=29.345 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot 1)=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 14)=2 \pi / 14 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.179 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.640 \angle-158.0^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.550 \angle 140.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=143.9^{\circ} ; \operatorname{Im}(\mathrm{ys})=-1.666 ; \theta_{\mathrm{p} 1}=121.0^{\circ}$ or $\theta_{\mathrm{s} 2}=14.1^{\circ} ; \operatorname{Im}(\mathrm{ys})=1.666 ; \theta_{\mathrm{p} 2}=59.0^{\circ}$
output: $\theta_{\mathrm{L} 1}=171.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.317 ; \theta_{\mathrm{p} 1}=127.2^{\circ}$ or $\theta_{\mathrm{L} 2}=48.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.317 ; \theta_{\mathrm{p} 2}=52.8^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load

$\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.434=1.565 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.119=4.940 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.289 \mathrm{~dB}+4.940 \mathrm{~dB}+1.565 \mathrm{~dB}=8.793 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=110 \mu \mathrm{~W}=-9.586 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-9.586 \mathrm{dBm}+8.793 \mathrm{~dB}=-0.793 \mathrm{dBm}=0.833 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.640<1$; $\left|S_{22}\right|=$ $0.550<1 ; \mathrm{K}=1.173>1 ;|\Delta|=|(0.208)+\mathrm{j} \cdot(0.204)|=0.292<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 8

1. $\mathrm{Z}_{\mathrm{L}}=57 \Omega$ paralel with 0.55 nH inductor at 8.6 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0175 \mathrm{~S}+\mathrm{j} \cdot(-$ $0.0336) S, y=Y_{L} \cdot 50 \Omega=0.877+j \cdot(-1.682)$ then $\left.b\right) z=1 / y=0.244+j \cdot(0.467$
2. a) $\Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(1.190+\mathrm{j} \cdot 1.025-1) /(1.190+\mathrm{j} \cdot 1.025+1)$
$\Gamma=(0.251)+\mathrm{j} \cdot(0.351) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.431 \angle 54.4^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 72Ω load to a 50Ω source at $f_{1}=8.8 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(Z_{0} \cdot Z_{L}\right)=60.000 \Omega$ and the line physical length is $l_{1}=\lambda_{1} / 4=c / 4 / f_{1}$.
At $f_{2}=3.8 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.216 \cdot \pi=0.678 ; \tan (\beta \cdot \mathrm{l})=0.806$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=61.37 \Omega+\mathrm{j} \cdot(-10.99) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=32.787 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 14)=2 \pi / 14 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.231 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.680 \angle 172.0^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.560 \angle 127.3^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=160.4^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.855 ; \theta_{\mathrm{p} 1}=118.3^{\circ}$ or $\theta_{\mathrm{S} 2}=27.6^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.855 ; \theta_{\mathrm{p} 2}=61.7^{\circ}$
output: $\theta_{\mathrm{L} 1}=178.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.352 ; \theta_{\mathrm{p} 1}=126.5^{\circ}$ or $\theta_{\mathrm{L} 2}=54.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.352 ; \theta_{\mathrm{p} 2}=53.5^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\mathrm{Smax}}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.860=2.695 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.457=1.634 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.534=5.483 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.695 \mathrm{~dB}+5.483 \mathrm{~dB}+1.634 \mathrm{~dB}=9.813 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=120 \mu \mathrm{~W}=-9.208 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-9.208 \mathrm{dBm}+9.813 \mathrm{~dB}=0.605 \mathrm{dBm}=1.149 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|\mathrm{S}_{11}\right|=0.680<1 ;\left|\mathrm{S}_{22}\right|=$ $0.560<1 ; \mathrm{K}=1.094>1 ;|\Delta|=|(0.026)+\mathrm{j} \cdot(0.365)|=0.366<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 9

1. $\mathrm{Z}_{\mathrm{L}}=68 \Omega$ series with 0.49 nH inductor at 8.3 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=68.00 \Omega+$ $j \cdot(25.55) \Omega, z=Z_{L} / 50 \Omega=1.360+j \cdot(0.511)$ then a) $y=1 / z=0.644+j \cdot(-0.242)$
2. a) $\Gamma=(z-1) /(z+1)=(0.815-j \cdot 1.280-1) /(0.815-j \cdot 1.280+1)$
$\Gamma=(0.264)+\mathrm{j} \cdot(-0.519) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.582 \angle-63.0^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 63Ω load to a 50Ω source at $f_{1}=7.1 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(Z_{0} \cdot Z_{L}\right)=56.125 \Omega$ and the line physical length is $l_{1}=\lambda_{1} / 4=c / 4 / f_{1}$.
At $f_{2}=2.7 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.190 \cdot \pi=0.597 ; \tan (\beta \cdot \mathrm{l})=0.680$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{Z^{2}} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=58.21 \Omega+\mathrm{j} \cdot(-6.27) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=24.450 \Omega$.

For a section of an open-circuited transmission line $Z_{i n}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 9)=2 \pi / 9 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.587 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.640 \angle-148.9^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.550 \angle 147.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=139.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-1.666 ; \theta_{\mathrm{p} 1}=121.0^{\circ}$ or $\theta_{\mathrm{S} 2}=9.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.666 ; \theta_{\mathrm{p} 2}=59.0^{\circ}$
output: $\theta_{\mathrm{L} 1}=168.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.317 ; \theta_{\mathrm{p} 1}=127.2^{\circ}$ or $\theta_{\mathrm{L} 2}=44.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.317 ; \theta_{\mathrm{p} 2}=52.8^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\text {Smax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.694=2.289 \mathrm{~dB}$; the gain from load match:
$\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.434=1.565 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=2.979=4.741 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.289 \mathrm{~dB}+4.741 \mathrm{~dB}+1.565 \mathrm{~dB}=8.594 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=125 \mu \mathrm{~W}=-9.031 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-9.031 \mathrm{dBm}+8.594 \mathrm{~dB}=-0.437 \mathrm{dBm}=0.904 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.640<1$; $\left|S_{22}\right|=$ $0.550<1 ; \mathrm{K}=1.184>1 ;|\Delta|=|(0.251)+\mathrm{j} \cdot(0.130)|=0.283<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 10

1. $\mathrm{Z}_{\mathrm{L}}=55 \Omega$ paralel with 0.71 nH inductor at 8.5 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0182 \mathrm{~S}+\mathrm{j} \cdot(-$ $0.0264) S, y=Y_{L} \cdot 50 \Omega=0.909+j \cdot(-1.319)$ then $\left.b\right) z=1 / y=0.354+j \cdot(0.514$
2. a) $\Gamma=(z-1) /(z+1)=(0.935-j \cdot 0.740-1) /(0.935-j \cdot 0.740+1)$
$\Gamma=(0.098)+\mathrm{j} \cdot(-0.345) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.359 \angle-74.1^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 48Ω load to a 50Ω source at $\mathrm{f}_{1}=9.5 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(Z_{0} \cdot Z_{L}\right)=48.990 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $\mathrm{f}_{2}=3.5 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot 1_{1}=2 \cdot \pi / \lambda_{2} \cdot 1_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.184 \cdot \pi=0.579 ; \tan (\beta \cdot 1)=0.653$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=48.58 \Omega+\mathrm{j} \cdot(0.91) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=38.534 \Omega$.

For a section of an open-circuited transmission line $Z_{i n}=-j \cdot Z_{0} \cdot \operatorname{ctg}(\beta \cdot 1)=1 /(j \cdot \omega \cdot C)=-j \cdot 1 / \omega / C ; \beta \cdot 1=$ $2 \pi / \lambda \cdot(\lambda / 9)=2 \pi / 9 ; \mathrm{C}=\operatorname{tg}(\beta \cdot \mathrm{l}) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.271 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.680 \angle 172.0^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.560 \angle 124.6^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=160.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.855 ; \theta_{\mathrm{p} 1}=118.3^{\circ}$ or $\theta_{\mathrm{S} 2}=27.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.855 ; \theta_{\mathrm{p} 2}=61.7^{\circ}$
output: $\theta_{\mathrm{L} 1}=179.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.352 ; \theta_{\mathrm{p} 1}=126.5^{\circ}$ or $\theta_{\mathrm{L} 2}=55.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.352 ; \theta_{\mathrm{p} 2}=53.5^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\mathrm{Smax}}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.860=2.695 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.457=1.634 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.633=5.602 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.695 \mathrm{~dB}+5.602 \mathrm{~dB}+1.634 \mathrm{~dB}=9.932 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=120 \mu \mathrm{~W}=-9.208 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-9.208 \mathrm{dBm}+9.932 \mathrm{~dB}=0.724 \mathrm{dBm}=1.181 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.680<1$; $\left|S_{22}\right|=$ $0.560<1 ; \mathrm{K}=1.100>1 ;|\Delta|=|(0.011)+\mathrm{j} \cdot(0.358)|=0.358<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 11

1. $\mathrm{Z}_{\mathrm{L}}=50 \Omega$ series with 0.99 nH inductor at 7.0 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=50.00 \Omega+$ $j \cdot(43.54) \Omega, z=Z_{L} / 50 \Omega=1.000+j \cdot(0.871)$ then a) $y=1 / z=0.569+j \cdot(-0.495)$
2. a) $\Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.925+\mathrm{j} \cdot 1.175-1) /(0.925+\mathrm{j} \cdot 1.175+1)$
$\Gamma=(0.243)+\mathrm{j} \cdot(0.462) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.522 \angle 62.3^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 27Ω load to a 50Ω source at $\mathrm{f}_{1}=10.0 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=36.742 \Omega$ and the line physical length is $1_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $\mathrm{f}_{2}=4.1 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot 1_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.205 \cdot \pi=0.644 ; \tan (\beta \cdot \mathrm{l})=0.751$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=32.37 \Omega+\mathrm{j} \cdot(9.73) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=33.622 \Omega$.

For a section of an open-circuited transmission line $Z_{i n}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 7)=2 \pi / 7 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.530 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.676 \angle-106.4^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.286 \angle-157.4^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=119.5^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.835 ; \theta_{\mathrm{p} 1}=118.6^{\circ}$ or $\theta_{\mathrm{S} 2}=166.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.835 ; \theta_{\mathrm{p} 2}=61.4^{\circ}$
output: $\theta_{\mathrm{L} 1}=132.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-0.597 ; \theta_{\mathrm{p} 1}=149.2^{\circ}$ or $\theta_{\mathrm{L} 2}=25.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=0.597 ; \theta_{\mathrm{p} 2}=30.8^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\text {Smax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.842=2.652 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.089=0.371 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=2.965=4.721 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.652 \mathrm{~dB}+4.721 \mathrm{~dB}+0.371 \mathrm{~dB}=7.743 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=55 \mu \mathrm{~W}=-12.596 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-12.596 \mathrm{dBm}+7.743 \mathrm{~dB}=-4.853 \mathrm{dBm}=0.327 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.676<1$; $\left|S_{22}\right|=$ $0.286<1 ; \mathrm{K}=1.155>1 ;|\Delta|=|(-0.240)+\mathrm{j} \cdot(-0.119)|=0.268<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 12

1. $\mathrm{Z}_{\mathrm{L}}=32 \Omega$ series with 0.38 pF capacitor at 8.9 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=32.00 \Omega+\mathrm{j} \cdot(-$ $47.06) \Omega, \mathrm{z}=\mathrm{Z}_{\mathrm{L}} / 50 \Omega=0.640+\mathrm{j} \cdot(-0.941)$ then a) $\mathrm{y}=1 / \mathrm{z}=0.494+\mathrm{j} \cdot(0.727)$
2. a) $\Gamma=(z-1) /(z+1)=(1.025-j \cdot 0.925-1) /(1.025-j \cdot 0.925+1)$
$\Gamma=(0.183)+\mathrm{j} \cdot(-0.373) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.416 \angle-63.9^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 57Ω load to a 50Ω source at $f_{1}=8.8 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(Z_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=53.385 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=3.4 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot 1_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.193 \cdot \pi=0.607 ; \tan (\beta \cdot \mathrm{l})=0.694$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=54.52 \Omega+\mathrm{j} \cdot(-3.35) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=18.550 \Omega$.

For a section of an open-circuited transmission line $Z_{i n}=-j \cdot Z_{0} \cdot \operatorname{ctg}(\beta \cdot 1)=1 /(j \cdot \omega \cdot C)=-j \cdot 1 / \omega / C ; \beta \cdot 1=$ $2 \pi / \lambda \cdot(\lambda / 13)=2 \pi / 13 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.617 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.680 \angle 172.0^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.560 \angle 126.4^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=160.4^{\circ} ; \operatorname{Im}(\mathrm{ys})=-1.855 ; \theta_{\mathrm{p} 1}=118.3^{\circ}$ or $\theta_{\mathrm{S} 2}=27.6^{\circ} ; \operatorname{Im}(\mathrm{ys})=1.855 ; \theta_{\mathrm{p} 2}=61.7^{\circ}$
output: $\theta_{\mathrm{L} 1}=178.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.352 ; \theta_{\mathrm{p} 1}=126.5^{\circ}$ or $\theta_{\mathrm{L} 2}=54.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.352 ; \theta_{\mathrm{p} 2}=53.5^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load

$\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.457=1.634 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.565=5.520 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{L} \max }=2.695 \mathrm{~dB}+5.520 \mathrm{~dB}+1.634 \mathrm{~dB}=9.850 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=50 \mu \mathrm{~W}=-13.010 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-13.010 \mathrm{dBm}+9.850 \mathrm{~dB}=-3.161 \mathrm{dBm}=0.483 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.680<1$; $\left|S_{22}\right|=$ $0.560<1 ; \mathrm{K}=1.096>1 ;|\Delta|=|(0.021)+\mathrm{j} \cdot(0.363)|=0.363<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 13

1. $\mathrm{Z}_{\mathrm{L}}=67 \Omega$ series with 0.25 pF capacitor at 8.9 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=67.00 \Omega+\mathrm{j} \cdot(-$ $71.53) \Omega, \mathrm{z}=\mathrm{Z}_{\mathrm{L}} / 50 \Omega=1.340+\mathrm{j} \cdot(-1.431)$ then a) $\mathrm{y}=1 / \mathrm{z}=0.349+\mathrm{j} \cdot(0.372)$
2. a) $\Gamma=(z-1) /(z+1)=(0.720+j \cdot 1.185-1) /(0.720+j \cdot 1.185+1)$
$\Gamma=(0.211)+\mathrm{j} \cdot(0.543) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.583 \angle 68.7^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 47Ω load to a 50Ω source at $f_{1}=9.0 \mathrm{GHz}$ so $Z_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=48.477 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $\mathrm{f}_{2}=2.9 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.161 \cdot \pi=0.506 ; \tan (\beta \cdot \mathrm{l})=0.554$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=47.67 \Omega+\mathrm{j} \cdot(1.25) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=36.018 \Omega$.

For a section of an open-circuited transmission line $\mathrm{Z}_{\mathrm{in}}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 8)=2 \pi / 8 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.388 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.684 \angle 170.6^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.560 \angle 120.1^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=161.3^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.875 ; \theta_{\mathrm{p} 1}=118.1^{\circ}$ or $\theta_{\mathrm{S} 2}=28.1^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.875 ; \theta_{\mathrm{p} 2}=61.9^{\circ}$
output: $\theta_{\mathrm{L} 1}=2.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.352 ; \theta_{\mathrm{p} 1}=126.5^{\circ}$ or $\theta_{\mathrm{L} 2}=57.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.352 ; \theta_{\mathrm{p} 2}=53.5^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\text {Smax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.879=2.740 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.457=1.634 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.795=5.792 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.740 \mathrm{~dB}+5.792 \mathrm{~dB}+1.634 \mathrm{~dB}=10.166 \mathrm{~dB}$
d) $P_{\text {in }}=70 \mu \mathrm{~W}=-11.549 \mathrm{dBm} ; P_{\text {out }}=P_{\text {in }}+G_{T}=-11.549 \mathrm{dBm}+10.166 \mathrm{~dB}=-1.383 \mathrm{dBm}=0.727 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.684<1 ;\left|S_{22}\right|=$ $0.560<1 ; \mathrm{K}=1.095>1 ;|\Delta|=|(-0.020)+\mathrm{j} \cdot(0.350)|=0.350<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 14

1. $\mathrm{Z}_{\mathrm{L}}=57 \Omega$ series with 0.54 nH inductor at 9.7 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=57.00 \Omega+$ $\mathrm{j} \cdot(32.91) \Omega, \mathrm{z}=\mathrm{Z}_{\mathrm{L}} / 50 \Omega=1.140+\mathrm{j} \cdot(0.658)$ then a) $\mathrm{y}=1 / \mathrm{z}=0.658+\mathrm{j} \cdot(-0.380)$
2. a) $\Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(1.050+\mathrm{j} \cdot 1.100-1) /(1.050+\mathrm{j} \cdot 1.100+1)$
$\Gamma=(0.242)+\mathrm{j} \cdot(0.406) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.473 \angle 59.2^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 62Ω load to a 50Ω source at $f_{1}=7.0 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=55.678 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=3.7 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.264 \cdot \pi=0.830 ; \tan (\beta \cdot \mathrm{l})=1.094$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{Z^{2}} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=54.83 \Omega+\mathrm{j} \cdot(-5.88) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=18.363 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 14)=2 \pi / 14 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.373 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.640 \angle-145.0^{\circ} ;$ Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.550 \angle 150.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=137.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-1.666 ; \theta_{\mathrm{p} 1}=121.0^{\circ}$ or $\theta_{\mathrm{S} 2}=7.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.666 ; \theta_{\mathrm{p} 2}=59.0^{\circ}$
output: $\theta_{\mathrm{L} 1}=166.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.317 ; \theta_{\mathrm{p} 1}=127.2^{\circ}$ or $\theta_{\mathrm{L} 2}=43.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.317 ; \theta_{\mathrm{p} 2}=52.8^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\text {Smax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.694=2.289 \mathrm{~dB}$; the gain from load match:
$\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.434=1.565 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=2.921=4.655 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.289 \mathrm{~dB}+4.655 \mathrm{~dB}+1.565 \mathrm{~dB}=8.508 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=125 \mu \mathrm{~W}=-9.031 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-9.031 \mathrm{dBm}+8.508 \mathrm{~dB}=-0.523 \mathrm{dBm}=0.887 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.640<1$; $\left|S_{22}\right|=$ $0.550<1 ; \mathrm{K}=1.189>1 ;|\Delta|=|(0.262)+\mathrm{j} \cdot(0.095)|=0.279<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 15

1. $\mathrm{Z}_{\mathrm{L}}=56 \Omega$ series with 0.37 pF capacitor at 7.0 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=56.00 \Omega+\mathrm{j} \cdot(-$ $61.45) \Omega, \mathrm{z}=\mathrm{Z}_{\mathrm{L}} / 50 \Omega=1.120+\mathrm{j} \cdot(-1.229)$ then a) $\mathrm{y}=1 / \mathrm{z}=0.405+\mathrm{j} \cdot(0.445)$
2. a) $\Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.755+\mathrm{j} \cdot 1.020-1) /(0.755+\mathrm{j} \cdot 1.020+1)$
$\Gamma=(0.148)+\mathrm{j} \cdot(0.495) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.517 \angle 73.3^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 53Ω load to a 50Ω source at $\mathrm{f}_{1}=9.9 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=51.478 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=4.0 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot 1_{1}=2 \cdot \pi / \lambda_{2} \cdot 1_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.202 \cdot \pi=0.635 ; \tan (\beta \cdot \mathrm{l})=0.736$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=51.91 \Omega+\mathrm{j} \cdot(-1.44) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=27.832 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 10)=2 \pi / 10 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.301 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.688 \angle 169.2^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.560 \angle 119.2^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=162.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-1.896 ; \theta_{\mathrm{p} 1}=117.8^{\circ}$ or $\theta_{\mathrm{S} 2}=28.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.896 ; \theta_{\mathrm{p} 2}=62.2^{\circ}$
output: $\theta_{\mathrm{L} 1}=2.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.352 ; \theta_{\mathrm{p} 1}=126.5^{\circ}$ or $\theta_{\mathrm{L} 2}=58.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.352 ; \theta_{\mathrm{p} 2}=53.5^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\mathrm{Smax}}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.899=2.785 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.457=1.634 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.830=5.832 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{L} \max }=2.785 \mathrm{~dB}+5.832 \mathrm{~dB}+1.634 \mathrm{~dB}=10.251 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=55 \mu \mathrm{~W}=-12.596 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-12.596 \mathrm{dBm}+10.251 \mathrm{~dB}=-2.346 \mathrm{dBm}=0.583 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|\mathrm{S}_{11}\right|=0.688<1 ;\left|\mathrm{S}_{22}\right|=$ $0.560<1 ; \mathrm{K}=1.079>1 ;|\Delta|=|(-0.034)+\mathrm{j} \cdot(0.351)|=0.353<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 16

1. $\mathrm{Z}_{\mathrm{L}}=48 \Omega$ paralel with 0.30 pF capacitor at 7.5 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0208 \mathrm{~S}+$ $j \cdot(0.0141) S, y=Y_{L} \cdot 50 \Omega=1.042+j \cdot(0.707)$ then $\left.b\right) z=1 / y=0.657+j \cdot(-0.446$
2. a) $\Gamma=(z-1) /(z+1)=(1.265-j \cdot 1.250-1) /(1.265-j \cdot 1.250+1)$
$\Gamma=(0.323)+\mathrm{j} \cdot(-0.374) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.494 \angle-49.1^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 33Ω load to a 50Ω source at $f_{1}=8.1 \mathrm{GHz}$ so $Z_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=40.620 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=4.3 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.265 \cdot \pi=0.834 ; \tan (\beta \cdot \mathrm{l})=1.102$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=40.56 \Omega+\mathrm{j} \cdot(8.45) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=19.540 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-j \cdot Z_{0} \cdot \operatorname{ctg}(\beta \cdot 1)=1 /(j \cdot \omega \cdot C)=-j \cdot 1 / \omega / C ; \beta \cdot l=$ $2 \pi / \lambda \cdot(\lambda / 11)=2 \pi / 11 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.400 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.684 \angle-104.6^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.294 \angle-154.6^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=118.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.875 ; \theta_{\mathrm{p} 1}=118.1^{\circ}$ or $\theta_{\mathrm{S} 2}=165.7^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=1.875 ; \theta_{\mathrm{p} 2}=61.9^{\circ}$
output: $\theta_{\mathrm{L} 1}=130.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-0.615 ; \theta_{\mathrm{p} 1}=148.4^{\circ}$ or $\theta_{\mathrm{L} 2}=23.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=0.615 ; \theta_{\mathrm{p} 2}=31.6^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\mathrm{Smax}}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.879=2.740 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.095=0.393 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=2.883=4.599 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.740 \mathrm{~dB}+4.599 \mathrm{~dB}+0.393 \mathrm{~dB}=7.731 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=145 \mu \mathrm{~W}=-8.386 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-8.386 \mathrm{dBm}+7.731 \mathrm{~dB}=-0.655 \mathrm{dBm}=0.860 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.684<1 ;\left|S_{22}\right|=$ $0.294<1 ; \mathrm{K}=1.130>1 ;|\Delta|=|(-0.252)+\mathrm{j} \cdot(-0.113)|=0.276<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 17

1. $\mathrm{Z}_{\mathrm{L}}=59 \Omega$ series with 1.16 nH inductor at 9.5 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=59.00 \Omega+$ $j \cdot(69.24) \Omega, z=Z_{L} / 50 \Omega=1.180+j \cdot(1.385)$ then a) $y=1 / z=0.356+j \cdot(-0.418)$
2. a) $\Gamma=(z-1) /(z+1)=(1.070-j \cdot 0.865-1) /(1.070-j \cdot 0.865+1)$
$\Gamma=(0.177)+\mathrm{j} \cdot(-0.344) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.387 \angle-62.7^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 71Ω load to a 50Ω source at $\mathrm{f}_{1}=7.3 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(Z_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=59.582 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=2.8 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.192 \cdot \pi=0.602 ; \tan (\beta \cdot \mathrm{l})=0.688$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=62.56 \Omega+\mathrm{j} \cdot(-10.30) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=33.806 \Omega$.

For a section of an open-circuited transmission line $Z_{i n}=-j \cdot Z_{0} \cdot \operatorname{ctg}(\beta \cdot 1)=1 /(j \cdot \omega \cdot C)=-j \cdot 1 / \omega / C ; \beta \cdot 1=$ $2 \pi / \lambda \cdot(\lambda / 14)=2 \pi / 14 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.160 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.680 \angle 172.0^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.560 \angle 125.5^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=160.4^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.855 ; \theta_{\mathrm{p} 1}=118.3^{\circ}$ or $\theta_{\mathrm{S} 2}=27.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.855 ; \theta_{\mathrm{p} 2}=61.7^{\circ}$
output: $\theta_{\mathrm{L} 1}=179.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.352 ; \theta_{\mathrm{p} 1}=126.5^{\circ}$ or $\theta_{\mathrm{L} 2}=55.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.352 ; \theta_{\mathrm{p} 2}=53.5^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load

$\mathrm{G}_{\text {Lmax }}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.457=1.634 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.599=5.561 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{L} \max }=2.695 \mathrm{~dB}+5.561 \mathrm{~dB}+1.634 \mathrm{~dB}=9.891 \mathrm{~dB}$
d) $P_{\text {in }}=80 \mu \mathrm{~W}=-10.969 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-10.969 \mathrm{dBm}+9.891 \mathrm{~dB}=-1.078 \mathrm{dBm}=0.780 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.680<1$; $\left|S_{22}\right|=$ $0.560<1 ; \mathrm{K}=1.098>1 ;|\Delta|=|(0.016)+\mathrm{j} \cdot(0.360)|=0.361<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 18

1. $\mathrm{Z}_{\mathrm{L}}=28 \Omega$ series with 1.14 nH inductor at 7.5 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=28.00 \Omega+$ $j \cdot(53.72) \Omega, z=Z_{L} / 50 \Omega=0.560+j \cdot(1.074)$ then a) $y=1 / z=0.381+j \cdot(-0.732)$
2. a) $\Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.865+\mathrm{j} \cdot 1.135-1) /(0.865+\mathrm{j} \cdot 1.135+1)$
$\Gamma=(0.217)+\mathrm{j} \cdot(0.476) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.524 \angle 65.5^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 27Ω load to a 50Ω source at $f_{1}=7.4 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=36.742 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $\mathrm{f}_{2}=2.8 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.189 \cdot \pi=0.594 ; \tan (\beta \cdot \mathrm{l})=0.676$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=31.55 \Omega+\mathrm{j} \cdot(9.16) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=22.704 \Omega$.

For a section of an open-circuited transmission line $Z_{i n}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 8)=2 \pi / 8 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.701 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.692 \angle-102.8^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.302 \angle-151.8^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=118.3^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.917 ; \theta_{\mathrm{p} 1}=117.5^{\circ}$ or $\theta_{\mathrm{S} 2}=164.5^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.917 ; \theta_{\mathrm{p} 2}=62.5^{\circ}$
output: $\theta_{\mathrm{L} 1}=129.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-0.634 ; \theta_{\mathrm{p} 1}=147.6^{\circ}$ or $\theta_{\mathrm{L} 2}=22.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=0.634 ; \theta_{\mathrm{p} 2}=32.4^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\text {Smax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.919=2.830 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.100=0.415 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=2.802=4.475 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.830 \mathrm{~dB}+4.475 \mathrm{~dB}+0.415 \mathrm{~dB}=7.721 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=120 \mu \mathrm{~W}=-9.208 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-9.208 \mathrm{dBm}+7.721 \mathrm{~dB}=-1.487 \mathrm{dBm}=0.710 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.692<1 ;\left|S_{22}\right|=$ $0.302<1 ; \mathrm{K}=1.106>1 ;|\Delta|=|(-0.265)+\mathrm{j} \cdot(-0.105)|=0.285<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 19

1. $\mathrm{Z}_{\mathrm{L}}=35 \Omega$ paralel with 0.60 nH inductor at 8.2 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0286 \mathrm{~S}+\mathrm{j} \cdot(-$ $0.0323) S, y=Y_{L} \cdot 50 \Omega=1.429+j \cdot(-1.617)$ then $\left.b\right) z=1 / y=0.307+j \cdot(0.347$
2. a) $\Gamma=(z-1) /(z+1)=(1.235-j \cdot 0.760-1) /(1.235-j \cdot 0.760+1)$
$\Gamma=(0.198)+\mathrm{j} \cdot(-0.273) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.337 \angle-54.0^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 26Ω load to a 50Ω source at $f_{1}=8.1 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(Z_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=36.056 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=2.9 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot 1_{1}=2 \cdot \pi / \lambda_{2} \cdot 1_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.179 \cdot \pi=0.562 ; \tan (\beta \cdot \mathrm{l})=0.630$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=30.11 \Omega+\mathrm{j} \cdot(9.04) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=31.623 \Omega$.

For a section of an open-circuited transmission line $Z_{i n}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 9)=2 \pi / 9 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.285 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.640 \angle-146.3^{\circ} ;$ Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.550 \angle 149.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=138.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-1.666 ; \theta_{\mathrm{p} 1}=121.0^{\circ}$ or $\theta_{\mathrm{S} 2}=8.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.666 ; \theta_{\mathrm{p} 2}=59.0^{\circ}$
output: $\theta_{\mathrm{L} 1}=167.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.317 ; \theta_{\mathrm{p} 1}=127.2^{\circ}$ or $\theta_{\mathrm{L} 2}=43.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.317 ; \theta_{\mathrm{p} 2}=52.8^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\text {Smax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.694=2.289 \mathrm{~dB}$; the gain from load match:
$\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.434=1.565 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=2.941=4.685 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.289 \mathrm{~dB}+4.685 \mathrm{~dB}+1.565 \mathrm{~dB}=8.538 \mathrm{~dB}$
d) $P_{\text {in }}=70 \mu \mathrm{~W}=-11.549 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-11.549 \mathrm{dBm}+8.538 \mathrm{~dB}=-3.011 \mathrm{dBm}=0.500 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.640<1$; $\left|S_{22}\right|=$ $0.550<1 ; \mathrm{K}=1.187>1 ;|\Delta|=|(0.259)+\mathrm{j} \cdot(0.107)|=0.280<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 20

1. $\mathrm{Z}_{\mathrm{L}}=68 \Omega$ paralel with 0.51 nH inductor at 8.7 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0147 \mathrm{~S}+\mathrm{j} \cdot(-$ $0.0359) S, y=Y_{L} \cdot 50 \Omega=0.735+j \cdot(-1.793)$ then $\left.b\right) z=1 / y=0.196+j \cdot(0.477$
2. a) $\Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(1.025+\mathrm{j} \cdot 1.075-1) /(1.025+\mathrm{j} \cdot 1.075+1)$
$\Gamma=(0.229)+\mathrm{j} \cdot(0.409) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.469 \angle 60.7^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 46Ω load to a 50Ω source at $f_{1}=9.7 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=47.958 \Omega$ and the line physical length is $1_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $\mathrm{f}_{2}=3.7 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot 1_{1}=2 \cdot \pi / \lambda_{2} \cdot 1_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.191 \cdot \pi=0.599 ; \tan (\beta \cdot \mathrm{l})=0.683$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=47.20 \Omega+\mathrm{j} \cdot(1.83) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=21.880 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 12)=2 \pi / 12 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.286 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.680 \angle-105.5^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.290 \angle-156.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=119.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.855 ; \theta_{\mathrm{p} 1}=118.3^{\circ}$ or $\theta_{\mathrm{S} 2}=166.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.855 ; \theta_{\mathrm{p} 2}=61.7^{\circ}$
output: $\theta_{\mathrm{L} 1}=131.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-0.606 ; \theta_{\mathrm{p} 1}=148.8^{\circ}$ or $\theta_{\mathrm{L} 2}=24.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=0.606 ; \theta_{\mathrm{p} 2}=31.2^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\mathrm{Smax}}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.860=2.695 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.092=0.382 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=2.924=4.660 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{L} \max }=2.695 \mathrm{~dB}+4.660 \mathrm{~dB}+0.382 \mathrm{~dB}=7.737 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=75 \mu \mathrm{~W}=-11.249 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-11.249 \mathrm{dBm}+7.737 \mathrm{~dB}=-3.513 \mathrm{dBm}=0.445 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|\mathrm{S}_{11}\right|=0.680<1$; $\left|\mathrm{S}_{22}\right|=$ $0.290<1 ; \mathrm{K}=1.143>1 ;|\Delta|=|(-0.246)+\mathrm{j} \cdot(-0.116)|=0.272<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 21

1. $\mathrm{Z}_{\mathrm{L}}=31 \Omega$ series with 1.09 nH inductor at 8.4 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=31.00 \Omega+$ $\mathrm{j} \cdot(57.53) \Omega, \mathrm{z}=\mathrm{Z}_{\mathrm{L}} / 50 \Omega=0.620+\mathrm{j} \cdot(1.151)$ then a) $\mathrm{y}=1 / \mathrm{z}=0.363+\mathrm{j} \cdot(-0.674)$
2. a) $\Gamma=(z-1) /(z+1)=(1.005-j \cdot 0.820-1) /(1.005-j \cdot 0.820+1)$
$\Gamma=(0.145)+\mathrm{j} \cdot(-0.349) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.379 \angle-67.4^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 57Ω load to a 50Ω source at $\mathrm{f}_{1}=8.8 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=53.385 \Omega$ and the line physical length is $1_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $\mathrm{f}_{2}=2.5 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot 1_{1}=2 \cdot \pi / \lambda_{2} \cdot 1_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.142 \cdot \pi=0.446 ; \tan (\beta \cdot \mathrm{l})=0.478$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=55.55 \Omega+\mathrm{j} \cdot(-2.84) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=24.537 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-j \cdot Z_{0} \cdot \operatorname{ctg}(\beta \cdot 1)=1 /(j \cdot \omega \cdot C)=-j \cdot 1 / \omega / C ; \beta \cdot l=$ $2 \pi / \lambda \cdot(\lambda / 7)=2 \pi / 7 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.594 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.672 \angle 178.0^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.558 \angle 132.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=157.1^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-1.815 ; \theta_{\mathrm{p} 1}=118.9^{\circ}$ or $\theta_{\mathrm{S} 2}=24.9^{\circ} ; \operatorname{Im}\left(\mathrm{yS}_{\mathrm{S}}\right)=1.815 ; \theta_{\mathrm{p} 2}=61.1^{\circ}$
output: $\theta_{\mathrm{L} 1}=176.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.345 ; \theta_{\mathrm{p} 1}=126.6^{\circ}$ or $\theta_{\mathrm{L} 2}=52.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.345 ; \theta_{\mathrm{p} 2}=53.4^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\text {Smax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.823=2.609 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.452=1.620 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.371=5.277 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.609 \mathrm{~dB}+5.277 \mathrm{~dB}+1.620 \mathrm{~dB}=9.506 \mathrm{~dB}$
d) $P_{\text {in }}=100 \mu \mathrm{~W}=-10.000 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-10.000 \mathrm{dBm}+9.506 \mathrm{~dB}=-0.494 \mathrm{dBm}=0.893 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|\mathrm{S}_{11}\right|=0.672<1 ;\left|\mathrm{S}_{22}\right|=$ $0.558<1 ; K=1.103>1 ;|\Delta|=|(0.087)+\mathfrak{j} \cdot(0.346)|=0.357<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 22

1. $\mathrm{Z}_{\mathrm{L}}=56 \Omega$ series with 0.54 nH inductor at 9.4 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=56.00 \Omega+$ $j \cdot(31.89) \Omega, z=Z_{\mathrm{L}} / 50 \Omega=1.120+\mathrm{j} \cdot(0.638)$ then a) $\mathrm{y}=1 / \mathrm{z}=0.674+\mathrm{j} \cdot(-0.384)$
2. a) $\Gamma=(z-1) /(z+1)=(1.180+j \cdot 0.920-1) /(1.180+j \cdot 0.920+1)$
$\Gamma=(0.221)+\mathrm{j} \cdot(0.329) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.396 \angle 56.0^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 34Ω load to a 50Ω source at $f_{1}=7.7 \mathrm{GHz}$ so $Z_{1}=$ $\sqrt{ }\left(Z_{0} \cdot Z_{L}\right)=41.231 \Omega$ and the line physical length is $l_{1}=\lambda_{1} / 4=c / 4 / f_{1}$.
At $f_{2}=3.2 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot 1_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.208 \cdot \pi=0.653 ; \tan (\beta \cdot \mathrm{l})=0.765$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=38.55 \Omega+\mathrm{j} \cdot(7.22) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=41.079 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot 1)=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 7)=2 \pi / 7 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.540 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.676 \angle 175.0^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.559 \angle 131.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=158.8^{\circ} ; \operatorname{Im}(\mathrm{ys})=-1.835 ; \theta_{\mathrm{p} 1}=118.6^{\circ}$ or $\theta_{\mathrm{s} 2}=26.2^{\circ} ; \operatorname{Im}(\mathrm{ys})=1.835 ; \theta_{\mathrm{p} 2}=61.4^{\circ}$
output: $\theta_{\mathrm{L} 1}=176.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.348 ; \theta_{\mathrm{p} 1}=126.6^{\circ}$ or $\theta_{\mathrm{L} 2}=52.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.348 ; \theta_{\mathrm{p} 2}=53.4^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load

$\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.455=1.627 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.404=5.320 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.652 \mathrm{~dB}+5.320 \mathrm{~dB}+1.627 \mathrm{~dB}=9.599 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=50 \mu \mathrm{~W}=-13.010 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-13.010 \mathrm{dBm}+9.599 \mathrm{~dB}=-3.411 \mathrm{dBm}=0.456 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.676<1$; $\left|S_{22}\right|=$ $0.559<1 ; \mathrm{K}=1.097>1 ;|\Delta|=|(0.065)+\mathrm{j} \cdot(0.360)|=0.366<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 23

1. $\mathrm{Z}_{\mathrm{L}}=39 \Omega$ paralel with 0.66 nH inductor at 8.9 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0256 \mathrm{~S}+\mathrm{j} \cdot(-$ $0.0271) \mathrm{S}, \mathrm{y}=\mathrm{Y}_{\mathrm{L}} \cdot 50 \Omega=1.282+\mathrm{j} \cdot(-1.355)$ then b$) \mathrm{z}=1 / \mathrm{y}=0.369+\mathrm{j} \cdot(0.389$
2. a) $\Gamma=(z-1) /(z+1)=(0.825+j \cdot 1.075-1) /(0.825+\mathrm{j} \cdot 1.075+1)$
$\Gamma=(0.186)+\mathrm{j} \cdot(0.479) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.514 \angle 68.7^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 68Ω load to a 50Ω source at $f_{1}=9.7 \mathrm{GHz}$ so $Z_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=58.310 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=3.1 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.160 \cdot \pi=0.502 ; \tan (\beta \cdot \mathrm{l})=0.549$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=62.77 \Omega+\mathrm{j} \cdot(-8.17) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=28.452 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 14)=2 \pi / 14 ; C=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot f) / Z_{0}=0.228 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.680 \angle 172.0^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.560 \angle 129.1^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=160.4^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.855 ; \theta_{\mathrm{p} 1}=118.3^{\circ}$ or $\theta_{\mathrm{S} 2}=27.6^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.855 ; \theta_{\mathrm{p} 2}=61.7^{\circ}$
output: $\theta_{\mathrm{L} 1}=177.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.352 ; \theta_{\mathrm{p} 1}=126.5^{\circ}$ or $\theta_{\mathrm{L} 2}=53.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.352 ; \theta_{\mathrm{p} 2}=53.5^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\text {Smax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.860=2.695 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.457=1.634 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.471=5.404 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.695 \mathrm{~dB}+5.404 \mathrm{~dB}+1.634 \mathrm{~dB}=9.734 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=140 \mu \mathrm{~W}=-8.539 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-8.539 \mathrm{dBm}+9.734 \mathrm{~dB}=1.195 \mathrm{dBm}=1.317 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.680<1 ;\left|S_{22}\right|=$ $0.560<1 ; \mathrm{K}=1.091>1 ;|\Delta|=|(0.037)+\mathrm{j} \cdot(0.370)|=0.371<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 24

1. $\mathrm{Z}_{\mathrm{L}}=40 \Omega$ paralel with 1.19 nH inductor at 6.9 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0250 \mathrm{~S}+\mathrm{j} \cdot(-$ $0.0194) S, y=Y_{L} \cdot 50 \Omega=1.250+j \cdot(-0.969)$ then $\left.b\right) z=1 / y=0.500+j \cdot(0.387$
2. a) $\Gamma=(z-1) /(z+1)=(0.765+j \cdot 0.710-1) /(0.765+j \cdot 0.710+1)$
$\Gamma=(0.025)+\mathrm{j} \cdot(0.392) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.393 \angle 86.4^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 46Ω load to a 50Ω source at $f_{1}=9.4 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(Z_{0} \cdot Z_{L}\right)=47.958 \Omega$ and the line physical length is $l_{1}=\lambda_{1} / 4=c / 4 / f_{1}$.
At $f_{2}=2.1 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.112 \cdot \pi=0.351 ; \tan (\beta \cdot \mathrm{l})=0.366$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=46.44 \Omega+\mathrm{j} \cdot(1.25) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=27.961 \Omega$.

For a section of an open-circuited transmission line $Z_{i n}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 9)=2 \pi / 9 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.549 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.668 \angle-179.0^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.557 \angle 133.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=155.5^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.795 ; \theta_{\mathrm{p} 1}=119.1^{\circ}$ or $\theta_{\mathrm{S} 2}=23.5^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.795 ; \theta_{\mathrm{p} 2}=60.9^{\circ}$
output: $\theta_{\mathrm{L} 1}=175.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.341 ; \theta_{\mathrm{p} 1}=126.7^{\circ}$ or $\theta_{\mathrm{L} 2}=51.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.341 ; \theta_{\mathrm{p} 2}=53.3^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\text {Smax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.806=2.567 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.450=1.613 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.342=5.240 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.567 \mathrm{~dB}+5.240 \mathrm{~dB}+1.613 \mathrm{~dB}=9.419 \mathrm{~dB}$
d) $P_{\text {in }}=85 \mu \mathrm{~W}=-10.706 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-10.706 \mathrm{dBm}+9.419 \mathrm{~dB}=-1.287 \mathrm{dBm}=0.744 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.668<1$; $\left|S_{22}\right|=$ $0.557<1 ; \mathrm{K}=1.110>1 ;|\Delta|=|(0.107)+\mathrm{j} \cdot(0.332)|=0.349<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 25

1. $\mathrm{Z}_{\mathrm{L}}=61 \Omega$ series with 0.25 pF capacitor at 9.2 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=61.00 \Omega+\mathrm{j} \cdot(-$ $69.20) \Omega, \mathrm{z}=\mathrm{Z}_{\mathrm{L}} / 50 \Omega=1.220+\mathrm{j} \cdot(-1.384)$ then a) $\mathrm{y}=1 / \mathrm{z}=0.358+\mathrm{j} \cdot(0.407)$
2. a) $\Gamma=(z-1) /(z+1)=(1.075-j \cdot 0.760-1) /(1.075-j \cdot 0.760+1)$
$\Gamma=(0.150)+\mathrm{j} \cdot(-0.311) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.346 \angle-64.2^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 49Ω load to a 50Ω source at $\mathrm{f}_{1}=9.0 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=49.497 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $\mathrm{f}_{2}=4.3 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot 1_{1}=2 \cdot \pi / \lambda_{2} \cdot 1_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.239 \cdot \pi=0.750 ; \tan (\beta \cdot \mathrm{l})=0.933$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=49.46 \Omega+\mathrm{j} \cdot(0.50) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=25.000 \Omega$.

For a section of an open-circuited transmission line $Z_{i n}=-j \cdot Z_{0} \cdot \operatorname{ctg}(\beta \cdot 1)=1 /(j \cdot \omega \cdot C)=-j \cdot 1 / \omega / C ; \beta \cdot 1=$ $2 \pi / \lambda \cdot(\lambda / 8)=2 \pi / 8 ; \mathrm{C}=\operatorname{tg}(\beta \cdot \mathrm{l}) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.663 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.696 \angle 166.4^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.560 \angle 117.4^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=163.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-1.939 ; \theta_{\mathrm{p} 1}=117.3^{\circ}$ or $\theta_{\mathrm{S} 2}=29.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.939 ; \theta_{\mathrm{p} 2}=62.7^{\circ}$
output: $\theta_{\mathrm{L} 1}=3.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.352 ; \theta_{\mathrm{p} 1}=126.5^{\circ}$ or $\theta_{\mathrm{L} 2}=59.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.352 ; \theta_{\mathrm{p} 2}=53.5^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\mathrm{Smax}}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.940=2.877 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.457=1.634 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.897=5.907 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.877 \mathrm{~dB}+5.907 \mathrm{~dB}+1.634 \mathrm{~dB}=10.418 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=80 \mu \mathrm{~W}=-10.969 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-10.969 \mathrm{dBm}+10.418 \mathrm{~dB}=-0.551 \mathrm{dBm}=0.881 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|\mathrm{S}_{11}\right|=0.696<1$; $\left|\mathrm{S}_{22}\right|=$ $0.560<1 ; \mathrm{K}=1.046>1 ;|\Delta|=|(-0.063)+\mathrm{j} \cdot(0.353)|=0.358<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 26

1. $\mathrm{Z}_{\mathrm{L}}=44 \Omega$ series with 1.24 nH inductor at 8.4 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=44.00 \Omega+$ $j \cdot(65.45) \Omega, z=Z_{L} / 50 \Omega=0.880+j \cdot(1.309)$ then a) $y=1 / z=0.354+j \cdot(-0.526)$
2. a) $\Gamma=(z-1) /(z+1)=(1.175-j \cdot 0.875-1) /(1.175-j \cdot 0.875+1)$
$\Gamma=(0.209)+\mathrm{j} \cdot(-0.318) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.381 \angle-56.8^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 48Ω load to a 50Ω source at $f_{1}=7.8 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=48.990 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=3.1 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.199 \cdot \pi=0.624 ; \tan (\beta \cdot \mathrm{l})=0.720$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=48.67 \Omega+\mathrm{j} \cdot(0.94) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=24.900 \Omega$.

For a section of an open-circuited transmission line $\mathrm{Z}_{\mathrm{in}}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 9)=2 \pi / 9 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.397 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.640 \angle-150.2^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.550 \angle 146.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=140.0^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.666 ; \theta_{\mathrm{p} 1}=121.0^{\circ}$ or $\theta_{\mathrm{s} 2}=10.2^{\circ} ; \operatorname{Im}(\mathrm{ys})=1.666 ; \theta_{\mathrm{p} 2}=59.0^{\circ}$
output: $\theta_{\mathrm{L} 1}=168.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.317 ; \theta_{\mathrm{p} 1}=127.2^{\circ}$ or $\theta_{\mathrm{L} 2}=45.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.317 ; \theta_{\mathrm{p} 2}=52.8^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\mathrm{Smax}}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.694=2.289 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.434=1.565 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.000=4.771 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.289 \mathrm{~dB}+4.771 \mathrm{~dB}+1.565 \mathrm{~dB}=8.624 \mathrm{~dB}$
d) $P_{\text {in }}=120 \mu \mathrm{~W}=-9.208 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-9.208 \mathrm{dBm}+8.624 \mathrm{~dB}=-0.584 \mathrm{dBm}=0.874 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.640<1$; $\left|S_{22}\right|=$ $0.550<1 ; \mathrm{K}=1.182>1 ;|\Delta|=|(0.246)+\mathrm{j} \cdot(0.141)|=0.284<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 27

1. $\mathrm{Z}_{\mathrm{L}}=72 \Omega$ paralel with 0.83 nH inductor at 8.4 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0139 \mathrm{~S}+\mathrm{j} \cdot(-$ $0.0228) \mathrm{S}, \mathrm{y}=\mathrm{Y}_{\mathrm{L}} \cdot 50 \Omega=0.694+\mathrm{j} \cdot(-1.141)$ then b$) \mathrm{z}=1 / \mathrm{y}=0.389+\mathrm{j} \cdot(0.639$
2. a) $\Gamma=(z-1) /(z+1)=(0.745+j \cdot 0.985-1) /(0.745+j \cdot 0.985+1)$
$\Gamma=(0.131)+\mathrm{j} \cdot(0.491) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.508 \angle 75.1^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 74Ω load to a 50Ω source at $\mathrm{f}_{1}=9.8 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=60.828 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=3.8 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.194 \cdot \pi=0.609 ; \tan (\beta \cdot \mathrm{l})=0.698$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=63.95 \Omega+\mathrm{j} \cdot(-11.84) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=18.132 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 12)=2 \pi / 12 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.618 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.668 \angle-108.2^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.278 \angle-160.2^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=120.1^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.795 ; \theta_{\mathrm{p} 1}=119.1^{\circ}$ or $\theta_{\mathrm{S} 2}=168.1^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.795 ; \theta_{\mathrm{p} 2}=60.9^{\circ}$
output: $\theta_{\mathrm{L} 1}=133.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-0.579 ; \theta_{\mathrm{p} 1}=149.9^{\circ}$ or $\theta_{\mathrm{L} 2}=27.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=0.579 ; \theta_{\mathrm{p} 2}=30.1^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\mathrm{Smax}}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.806=2.567 \mathrm{~dB}$; the gain from load match:
$\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.084=0.349 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.049=4.841 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.567 \mathrm{~dB}+4.841 \mathrm{~dB}+0.349 \mathrm{~dB}=7.757 \mathrm{~dB}$
d) $P_{\text {in }}=100 \mu \mathrm{~W}=-10.000 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-10.000 \mathrm{dBm}+7.757 \mathrm{~dB}=-2.243 \mathrm{dBm}=0.597 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.668<1$; $\left|S_{22}\right|=$ $0.278<1 ; \mathrm{K}=1.180>1 ;|\Delta|=|(-0.228)+\mathrm{j} \cdot(-0.125)|=0.260<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 28

1. $\mathrm{Z}_{\mathrm{L}}=55 \Omega$ paralel with 1.62 nH inductor at 7.0 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0182 \mathrm{~S}+\mathrm{j} \cdot(-$ $0.0140) S, y=Y_{L} \cdot 50 \Omega=0.909+j \cdot(-0.702)$ then $\left.b\right) z=1 / y=0.689+j \cdot(0.532$
2. a) $\Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.860+\mathrm{j} \cdot 1.220-1) /(0.860+\mathrm{j} \cdot 1.220+1)$
$\Gamma=(0.248)+\mathrm{j} \cdot(0.493) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.552 \angle 63.3^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 47Ω load to a 50Ω source at $f_{1}=8.2 \mathrm{GHz}$ so $Z_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=48.477 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=3.1 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.189 \cdot \pi=0.594 ; \tan (\beta \cdot \mathrm{l})=0.675$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=47.90 \Omega+\mathrm{j} \cdot(1.37) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=19.211 \Omega$.

For a section of an open-circuited transmission line $Z_{i n}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 8)=2 \pi / 8 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=1.076 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.700 \angle-101.0^{\circ} ;$ Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.310 \angle-149.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=117.7^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.960 ; \theta_{\mathrm{p} 1}=117.0^{\circ}$ or $\theta_{\mathrm{S} 2}=163.3^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.960 ; \theta_{\mathrm{p} 2}=63.0^{\circ}$
output: $\theta_{\mathrm{L} 1}=128.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-0.652 ; \theta_{\mathrm{p} 1}=146.9^{\circ}$ or $\theta_{\mathrm{L} 2}=20.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=0.652 ; \theta_{\mathrm{p} 2}=33.1^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\text {Smax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.961=2.924 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.106=0.439 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=2.723=4.350 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{L} \max }=2.924 \mathrm{~dB}+4.350 \mathrm{~dB}+0.439 \mathrm{~dB}=7.713 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=85 \mu \mathrm{~W}=-10.706 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-10.706 \mathrm{dBm}+7.713 \mathrm{~dB}=-2.993 \mathrm{dBm}=0.502 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.700<1$; $\left|S_{22}\right|=$ $0.310<1 ; \mathrm{K}=1.083>1 ;|\Delta|=|(-0.278)+\mathrm{j} \cdot(-0.095)|=0.294<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 29

1. $\mathrm{Z}_{\mathrm{L}}=32 \Omega$ paralel with 1.31 nH inductor at 6.5 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0313 \mathrm{~S}+\mathrm{j} \cdot(-$ $0.0187) S, y=Y_{L} \cdot 50 \Omega=1.563+j \cdot(-0.935)$ then $\left.b\right) z=1 / y=0.471+j \cdot(0.282$
2. a) $\Gamma=(z-1) /(z+1)=(1.020-j \cdot 0.765-1) /(1.020-j \cdot 0.765+1)$
$\Gamma=(0.134)+\mathrm{j} \cdot(-0.328) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.354 \angle-67.8^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 59Ω load to a 50Ω source at $f_{1}=6.6 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(Z_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=54.314 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=4.0 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.303 \cdot \pi=0.952 ; \tan (\beta \cdot \mathrm{l})=1.404$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{Z^{2}} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=52.71 \Omega+\mathrm{j} \cdot(-4.13) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=21.635 \Omega$.

For a section of an open-circuited transmission line $Z_{i n}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 7)=2 \pi / 7 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.913 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.644 \angle-161.0^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.551 \angle 139.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=145.5^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.684 ; \theta_{\mathrm{p} 1}=120.7^{\circ}$ or $\theta_{\mathrm{S} 2}=15.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.684 ; \theta_{\mathrm{p} 2}=59.3^{\circ}$
output: $\theta_{\mathrm{L} 1}=172.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.321 ; \theta_{\mathrm{p} 1}=127.1^{\circ}$ or $\theta_{\mathrm{L} 2}=48.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.321 ; \theta_{\mathrm{p} 2}=52.9^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\mathrm{Smax}}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.709=2.326 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.436=1.571 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.151=4.984 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.326 \mathrm{~dB}+4.984 \mathrm{~dB}+1.571 \mathrm{~dB}=8.882 \mathrm{~dB}$
d) $P_{\text {in }}=100 \mu \mathrm{~W}=-10.000 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-10.000 \mathrm{dBm}+8.882 \mathrm{~dB}=-1.118 \mathrm{dBm}=0.773 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.644<1 ;\left|S_{22}\right|=$ $0.551<1 ; \mathrm{K}=1.162>1 ;|\Delta|=|(0.198)+\mathrm{j} \cdot(0.225)|=0.299<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 30

1. $\mathrm{Z}_{\mathrm{L}}=52 \Omega$ series with 0.48 pF capacitor at 7.4 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=52.00 \Omega+\mathrm{j} \cdot(-$ $44.81) \Omega, \mathrm{z}=\mathrm{Z}_{\mathrm{L}} / 50 \Omega=1.040+\mathrm{j} \cdot(-0.896)$ then a) $\mathrm{y}=1 / \mathrm{z}=0.552+\mathrm{j} \cdot(0.475)$
2. a) $\Gamma=(z-1) /(z+1)=(0.900-j \cdot 0.900-1) /(0.900-j \cdot 0.900+1)$
$\Gamma=(0.140)+\mathrm{j} \cdot(-0.407) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.431 \angle-71.0^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 36Ω load to a 50Ω source at $f_{1}=9.3 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=42.426 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $\mathrm{f}_{2}=2.8 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot 1_{1}=2 \cdot \pi / \lambda_{2} \cdot 1_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.151 \cdot \pi=0.473 ; \tan (\beta \cdot \mathrm{l})=0.512$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=38.22 \Omega+\mathrm{j} \cdot(5.11) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=18.744 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 13)=2 \pi / 13 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.365 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.660 \angle-110.0^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.270 \angle-163.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=120.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=-1.757 ; \theta_{\mathrm{p} 1}=119.6^{\circ}$ or $\theta_{\mathrm{S} 2}=169.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=1.757 ; \theta_{\mathrm{p} 2}=60.4^{\circ}$
output: $\theta_{\mathrm{L} 1}=134.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-0.561 ; \theta_{\mathrm{p} 1}=150.7^{\circ}$ or $\theta_{\mathrm{L} 2}=28.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=0.561 ; \theta_{\mathrm{p} 2}=29.3^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\mathrm{Smax}}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.772=2.484 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.079=0.329 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.133=4.959 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{L} \max }=2.484 \mathrm{~dB}+4.959 \mathrm{~dB}+0.329 \mathrm{~dB}=7.772 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=85 \mu \mathrm{~W}=-10.706 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-10.706 \mathrm{dBm}+7.772 \mathrm{~dB}=-2.933 \mathrm{dBm}=0.509 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.660<1$; $\left|S_{22}\right|=$ $0.270<1 ; \mathrm{K}=1.206>1 ;|\Delta|=|(-0.216)+\mathrm{j} \cdot(-0.130)|=0.252<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 31

1. $\mathrm{Z}_{\mathrm{L}}=36 \Omega$ paralel with 1.16 nH inductor at 9.9 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0278 \mathrm{~S}+\mathrm{j} \cdot(-$ $0.0139) S, y=Y_{L} \cdot 50 \Omega=1.389+j \cdot(-0.693)$ then $\left.b\right) z=1 / y=0.576+j \cdot(0.288$
2. a) $\Gamma=(z-1) /(z+1)=(1.105+j \cdot 0.765-1) /(1.105+j \cdot 0.765+1)$
$\Gamma=(0.161)+\mathrm{j} \cdot(0.305) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.345 \angle 62.2^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 72Ω load to a 50Ω source at $f_{1}=9.7 \mathrm{GHz}$ so $Z_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=60.000 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=2.2 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.113 \cdot \pi=0.356 ; \tan (\beta \cdot \mathrm{l})=0.372$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=68.34 \Omega+\mathrm{j} \cdot(-8.19) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=28.868 \Omega$.

For a section of an open-circuited transmission line $Z_{i n}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 9)=2 \pi / 9 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.406 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.680 \angle 172.0^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.560 \angle 123.7^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=160.4^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.855 ; \theta_{\mathrm{p} 1}=118.3^{\circ}$ or $\theta_{\mathrm{S} 2}=27.6^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.855 ; \theta_{\mathrm{p} 2}=61.7^{\circ}$
output: $\theta_{\mathrm{L} 1}=0.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.352 ; \theta_{\mathrm{p} 1}=126.5^{\circ}$ or $\theta_{\mathrm{L} 2}=56.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.352 ; \theta_{\mathrm{p} 2}=53.5^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\mathrm{Smax}}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.860=2.695 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.457=1.634 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.663=5.639 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.695 \mathrm{~dB}+5.639 \mathrm{~dB}+1.634 \mathrm{~dB}=9.968 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=145 \mu \mathrm{~W}=-8.386 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-8.386 \mathrm{dBm}+9.968 \mathrm{~dB}=1.582 \mathrm{dBm}=1.440 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|\mathrm{S}_{11}\right|=0.680<1 ;\left|\mathrm{S}_{22}\right|=$ $0.560<1 ; K=1.103>1 ;|\Delta|=|(0.007)+\mathrm{j} \cdot(0.355)|=0.355<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 32

1. $\mathrm{Z}_{\mathrm{L}}=46 \Omega$ paralel with 0.60 pF capacitor at 6.7 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0217 \mathrm{~S}+$ $\mathrm{j} \cdot(0.0253) \mathrm{S}, \mathrm{y}=\mathrm{Y}_{\mathrm{L}} \cdot 50 \Omega=1.087+\mathrm{j} \cdot(1.263)$ then b$) \mathrm{z}=1 / \mathrm{y}=0.391+\mathrm{j} \cdot(-0.455$
2. a) $\Gamma=(z-1) /(z+1)=(0.835+j \cdot 0.830-1) /(0.835+j \cdot 0.830+1)$
$\Gamma=(0.095)+\mathrm{j} \cdot(0.409) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.420 \angle 76.9^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 72Ω load to a 50Ω source at $\mathrm{f}_{1}=10.0 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=60.000 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=2.1 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.105 \cdot \pi=0.330 ; \tan (\beta \cdot \mathrm{l})=0.342$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=68.82 \Omega+\mathrm{j} \cdot(-7.73) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=32.596 \Omega$.

For a section of an open-circuited transmission line $Z_{i n}=-j \cdot Z_{0} \cdot \operatorname{ctg}(\beta \cdot 1)=1 /(j \cdot \omega \cdot C)=-j \cdot 1 / \omega / C ; \beta \cdot 1=$ $2 \pi / \lambda \cdot(\lambda / 7)=2 \pi / 7 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.658 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.640 \angle-147.6^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.550 \angle 148.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=138.7^{\circ} ; \operatorname{Im}(\mathrm{ys})=-1.666 ; \theta_{\mathrm{p} 1}=121.0^{\circ}$ or $\theta_{\mathrm{S} 2}=8.9^{\circ} ; \operatorname{Im}(\mathrm{ys})=1.666 ; \theta_{\mathrm{p} 2}=59.0^{\circ}$
output: $\theta_{\mathrm{L} 1}=167.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.317 ; \theta_{\mathrm{p} 1}=127.2^{\circ}$ or $\theta_{\mathrm{L} 2}=44.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.317 ; \theta_{\mathrm{p} 2}=52.8^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load

$\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.434=1.565 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=2.958=4.711 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.289 \mathrm{~dB}+4.711 \mathrm{~dB}+1.565 \mathrm{~dB}=8.564 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=50 \mu \mathrm{~W}=-13.010 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-13.010 \mathrm{dBm}+8.564 \mathrm{~dB}=-4.447 \mathrm{dBm}=0.359 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.640<1$; $\left|S_{22}\right|=$ $0.550<1 ; \mathrm{K}=1.186>1 ;|\Delta|=|(0.255)+\mathrm{j} \cdot(0.119)|=0.282<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 33

1. $\mathrm{Z}_{\mathrm{L}}=25 \Omega$ series with 0.30 pF capacitor at 7.8 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=25.00 \Omega+\mathrm{j} \cdot(-$ $68.01) \Omega, \mathrm{z}=\mathrm{Z}_{\mathrm{L}} / 50 \Omega=0.500+\mathrm{j} \cdot(-1.360)$ then a) $\mathrm{y}=1 / \mathrm{z}=0.238+\mathrm{j} \cdot(0.648)$
2. a) $\Gamma=(z-1) /(z+1)=(1.290-j \cdot 0.755-1) /(1.290-\mathrm{j} \cdot 0.755+1)$
$\Gamma=(0.212)+\mathrm{j} \cdot(-0.260) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.335 \angle-50.7^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 60Ω load to a 50Ω source at $f_{1}=7.0 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(Z_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=54.772 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=2.0 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.143 \cdot \pi=0.449 ; \tan (\beta \cdot \mathrm{l})=0.482$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=57.82 \Omega+\mathrm{j} \cdot(-4.13) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=25.081 \Omega$.

For a section of an open-circuited transmission line $\mathrm{Z}_{\mathrm{in}}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 7)=2 \pi / 7 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.534 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.672 \angle-107.3^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.282 \angle-158.8^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=119.8^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.815 ; \theta_{\mathrm{p} 1}=118.9^{\circ}$ or $\theta_{\mathrm{S} 2}=167.5^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.815 ; \theta_{\mathrm{p} 2}=61.1^{\circ}$
output: $\theta_{\mathrm{L} 1}=132.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-0.588 ; \theta_{\mathrm{p} 1}=149.6^{\circ}$ or $\theta_{\mathrm{L} 2}=26.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=0.588 ; \theta_{\mathrm{p} 2}=30.4^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\text {Smax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.823=2.609 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.086=0.360 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.007=4.781 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.609 \mathrm{~dB}+4.781 \mathrm{~dB}+0.360 \mathrm{~dB}=7.750 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=55 \mu \mathrm{~W}=-12.596 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-12.596 \mathrm{dBm}+7.750 \mathrm{~dB}=-4.847 \mathrm{dBm}=0.328 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.672<1 ;\left|S_{22}\right|=$ $0.282<1 ; \mathrm{K}=1.167>1 ;|\Delta|=|(-0.234)+\mathrm{j} \cdot(-0.122)|=0.264<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 34

1. $\mathrm{Z}_{\mathrm{L}}=58 \Omega$ series with 1.75 nH inductor at 6.5 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=58.00 \Omega+$ $j \cdot(71.47) \Omega, z=Z_{L} / 50 \Omega=1.160+j \cdot(1.429)$ then a) $y=1 / z=0.342+j \cdot(-0.422)$
2. a) $\Gamma=(z-1) /(z+1)=(0.870+j \cdot 0.705-1) /(0.870+j \cdot 0.705+1)$
$\Gamma=(0.064)+\mathrm{j} \cdot(0.353) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.359 \angle 79.8^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 64Ω load to a 50Ω source at $f_{1}=8.2 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(Z_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=56.569 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=2.9 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.177 \cdot \pi=0.556 ; \tan (\beta \cdot 1)=0.621$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{Z^{2}} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=59.38 \Omega+\mathrm{j} \cdot(-6.58) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=40.311 \Omega$.

For a section of an open-circuited transmission line $Z_{i n}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 6)=2 \pi / 6 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.844 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.664 \angle-176.0^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.556 \angle 134.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=153.8^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.776 ; \theta_{\mathrm{p} 1}=119.4^{\circ}$ or $\theta_{\mathrm{S} 2}=22.2^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.776 ; \theta_{\mathrm{p} 2}=60.6^{\circ}$
output: $\theta_{\mathrm{L} 1}=174.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.338 ; \theta_{\mathrm{p} 1}=126.8^{\circ}$ or $\theta_{\mathrm{L} 2}=51.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.338 ; \theta_{\mathrm{p} 2}=53.2^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\mathrm{Smax}}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.789=2.525 \mathrm{~dB}$; the gain from load match:
$\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.447=1.606 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.309=5.197 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.525 \mathrm{~dB}+5.197 \mathrm{~dB}+1.606 \mathrm{~dB}=9.328 \mathrm{~dB}$
d) $P_{\text {in }}=60 \mu \mathrm{~W}=-12.218 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-12.218 \mathrm{dBm}+9.328 \mathrm{~dB}=-2.891 \mathrm{dBm}=0.514 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.664<1 ;\left|S_{22}\right|=$ $0.556<1 ; \mathrm{K}=1.117>1 ;|\Delta|=|(0.126)+\mathrm{j} \cdot(0.316)|=0.340<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 35

1. $\mathrm{Z}_{\mathrm{L}}=66 \Omega$ paralel with 0.54 nH inductor at 7.8 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0152 \mathrm{~S}+\mathrm{j} \cdot(-$ $0.0378) S, y=Y_{L} \cdot 50 \Omega=0.758+j \cdot(-1.889)$ then $\left.b\right) z=1 / y=0.183+j \cdot(0.456$
2. a) $\Gamma=(z-1) /(z+1)=(1.290-j \cdot 0.765-1) /(1.290-j \cdot 0.765+1)$
$\Gamma=(0.214)+\mathrm{j} \cdot(-0.262) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.339 \angle-50.8^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 55Ω load to a 50Ω source at $\mathrm{f}_{1}=8.5 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(Z_{0} \cdot Z_{L}\right)=52.440 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=4.1 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot 1_{1}=2 \cdot \pi / \lambda_{2} \cdot 1_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.241 \cdot \pi=0.758 ; \tan (\beta \cdot \mathrm{l})=0.946$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=52.52 \Omega+\mathrm{j} \cdot(-2.50) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=16.903 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 14)=2 \pi / 14 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.515 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.640 \angle-151.5^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.550 \angle 145.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=140.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-1.666 ; \theta_{\mathrm{p} 1}=121.0^{\circ}$ or $\theta_{\mathrm{S} 2}=10.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.666 ; \theta_{\mathrm{p} 2}=59.0^{\circ}$ output: $\theta_{\mathrm{L} 1}=169.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.317 ; \theta_{\mathrm{p} 1}=127.2^{\circ}$ or $\theta_{\mathrm{L} 2}=45.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.317 ; \theta_{\mathrm{p} 2}=52.8^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\text {Smax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.694=2.289 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.434=1.565 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.017=4.796 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.289 \mathrm{~dB}+4.796 \mathrm{~dB}+1.565 \mathrm{~dB}=8.649 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=55 \mu \mathrm{~W}=-12.596 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-12.596 \mathrm{dBm}+8.649 \mathrm{~dB}=-3.947 \mathrm{dBm}=0.403 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.640<1 ;\left|S_{22}\right|=$ $0.550<1 ; \mathrm{K}=1.181>1 ;|\Delta|=|(0.241)+\mathrm{j} \cdot(0.152)|=0.285<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 36

1. $\mathrm{Z}_{\mathrm{L}}=42 \Omega$ paralel with 0.94 nH inductor at 7.1 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0238 \mathrm{~S}+\mathrm{j} \cdot(-$ $0.0238) \mathrm{S}, \mathrm{y}=\mathrm{Y}_{\mathrm{L}} \cdot 50 \Omega=1.190+\mathrm{j} \cdot(-1.192)$ then b$) \mathrm{z}=1 / \mathrm{y}=0.419+\mathrm{j} \cdot(0.420$
2. a) $\Gamma=(z-1) /(z+1)=(1.045-j \cdot 1.195-1) /(1.045-j \cdot 1.195+1)$
$\Gamma=(0.271)+\mathrm{j} \cdot(-0.426) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.505 \angle-57.5^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 48Ω load to a 50Ω source at $f_{1}=9.3 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=48.990 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $\mathrm{f}_{2}=2.4 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.129 \cdot \pi=0.405 ; \tan (\beta \cdot \mathrm{l})=0.429$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=48.30 \Omega+\mathrm{j} \cdot(0.71) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=30.000 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 10)=2 \pi / 10 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.507 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.637 \angle-141.1^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.550 \angle 152.7^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=135.3^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.653 ; \theta_{\mathrm{p} 1}=121.2^{\circ}$ or $\theta_{\mathrm{S} 2}=5.8^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.653 ; \theta_{\mathrm{p} 2}=58.8^{\circ}$
output: $\theta_{\mathrm{L} 1}=165.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.317 ; \theta_{\mathrm{p} 1}=127.2^{\circ}$ or $\theta_{\mathrm{L} 2}=42.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.317 ; \theta_{\mathrm{p} 2}=52.8^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source $/$ load
c) The gain from source match: $\mathrm{G}_{\mathrm{Smax}}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.683=2.260 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.434=1.565 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=2.863=4.568 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.260 \mathrm{~dB}+4.568 \mathrm{~dB}+1.565 \mathrm{~dB}=8.393 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=65 \mu \mathrm{~W}=-11.871 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-11.871 \mathrm{dBm}+8.393 \mathrm{~dB}=-3.478 \mathrm{dBm}=0.449 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.637<1 ;\left|S_{22}\right|=$ $0.550<1 ; K=1.201>1 ;|\Delta|=|(0.265)+\mathrm{j} \cdot(0.060)|=0.272<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 37

1. $\mathrm{Z}_{\mathrm{L}}=38 \Omega$ paralel with 0.26 pF capacitor at 9.7 GHz . It's easier to compute first: a) $\mathrm{Y}_{\mathrm{L}}=0.0263 \mathrm{~S}+$ $j \cdot(0.0158) S, y=Y_{L} \cdot 50 \Omega=1.316+j \cdot(0.792)$ then $\left.b\right) z=1 / y=0.558+j \cdot(-0.336$
2. a) $\Gamma=(\mathrm{z}-1) /(\mathrm{z}+1)=(0.935+\mathrm{j} \cdot 1.065-1) /(0.935+\mathrm{j} \cdot 1.065+1)$
$\Gamma=(0.207)+\mathrm{j} \cdot(0.437) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.483 \angle 64.7^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 73Ω load to a 50Ω source at $f_{1}=9.1 \mathrm{GHz}$ so $Z_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=60.415 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=4.4 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.242 \cdot \pi=0.760 ; \tan (\beta \cdot \mathrm{l})=0.950$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=59.93 \Omega+\mathrm{j} \cdot(-11.39) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=41.138 \Omega$.

For a section of an open-circuited transmission line $Z_{i n}=-j \cdot Z_{0} \cdot \operatorname{ctg}(\beta \cdot 1)=1 /(j \cdot \omega \cdot C)=-j \cdot 1 / \omega / C ; \beta \cdot 1=$ $2 \pi / \lambda \cdot(\lambda / 9)=2 \pi / 9 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.321 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.680 \angle 172.0^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.560 \angle 121.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=160.4^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.855 ; \theta_{\mathrm{p} 1}=118.3^{\circ}$ or $\theta_{\mathrm{S} 2}=27.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=1.855 ; \theta_{\mathrm{p} 2}=61.7^{\circ}$
output: $\theta_{\mathrm{L} 1}=1.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.352 ; \theta_{\mathrm{p} 1}=126.5^{\circ}$ or $\theta_{\mathrm{L} 2}=57.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.352 ; \theta_{\mathrm{p} 2}=53.5^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load

$\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.457=1.634 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.764=5.756 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.695 \mathrm{~dB}+5.756 \mathrm{~dB}+1.634 \mathrm{~dB}=10.086 \mathrm{~dB}$
d) $P_{\text {in }}=70 \mu \mathrm{~W}=-11.549 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-11.549 \mathrm{dBm}+10.086 \mathrm{~dB}=-1.463 \mathrm{dBm}=0.714 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.680<1$; $\left|S_{22}\right|=$ $0.560<1 ; \mathrm{K}=1.112>1 ;|\Delta|=|(-0.006)+\mathrm{j} \cdot(0.348)|=0.348<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 38

1. $\mathrm{Z}_{\mathrm{L}}=44 \Omega$ series with 0.48 nH inductor at 8.8 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=44.00 \Omega+$ $\mathrm{j} \cdot(26.54) \Omega, \mathrm{z}=\mathrm{Z}_{\mathrm{L}} / 50 \Omega=0.880+\mathrm{j} \cdot(0.531)$ then a) $\mathrm{y}=1 / \mathrm{z}=0.833+\mathrm{j} \cdot(-0.503)$
2. a) $\Gamma=(z-1) /(z+1)=(0.885-j \cdot 0.875-1) /(0.885-j \cdot 0.875+1)$
$\Gamma=(0.127)+\mathrm{j} \cdot(-0.405) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.425 \angle-72.6^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 57Ω load to a 50Ω source at $f_{1}=7.5 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(Z_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=53.385 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=2.2 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.147 \cdot \pi=0.461 ; \tan (\beta \cdot \mathrm{l})=0.496$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=55.46 \Omega+\mathrm{j} \cdot(-2.90) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=28.636 \Omega$.

For a section of an open-circuited transmission line $Z_{i n}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 8)=2 \pi / 8 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.695 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.664 \angle-109.1^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.274 \angle-161.6^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=120.4^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.776 ; \theta_{\mathrm{p} 1}=119.4^{\circ}$ or $\theta_{\mathrm{S} 2}=168.7^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.776 ; \theta_{\mathrm{p} 2}=60.6^{\circ}$
output: $\theta_{\mathrm{L} 1}=133.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-0.570 ; \theta_{\mathrm{p} 1}=150.3^{\circ}$ or $\theta_{\mathrm{L} 2}=27.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=0.570 ; \theta_{\mathrm{p} 2}=29.7^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\text {Smax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.789=2.525 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.081=0.339 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.091=4.900 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.525 \mathrm{~dB}+4.900 \mathrm{~dB}+0.339 \mathrm{~dB}=7.764 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=110 \mu \mathrm{~W}=-9.586 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-9.586 \mathrm{dBm}+7.764 \mathrm{~dB}=-1.822 \mathrm{dBm}=0.657 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.664<1 ;\left|S_{22}\right|=$ $0.274<1 ; \mathrm{K}=1.193>1 ;|\Delta|=|(-0.222)+\mathrm{j} \cdot(-0.128)|=0.256<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 39

1. $\mathrm{Z}_{\mathrm{L}}=72 \Omega$ series with 0.62 pF capacitor at 9.0 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=72.00 \Omega+\mathrm{j} \cdot(-$ $28.52) \Omega, \mathrm{z}=\mathrm{Z}_{\mathrm{L}} / 50 \Omega=1.440+\mathrm{j} \cdot(-0.570)$ then a) $\mathrm{y}=1 / \mathrm{z}=0.600+\mathrm{j} \cdot(0.238)$
2. a) $\Gamma=(z-1) /(z+1)=(1.060+j \cdot 0.940-1) /(1.060+j \cdot 0.940+1)$
$\Gamma=(0.196)+\mathrm{j} \cdot(0.367) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.416 \angle 61.8^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 56Ω load to a 50Ω source at $\mathrm{f}_{1}=7.4 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(Z_{0} \cdot Z_{L}\right)=52.915 \Omega$ and the line physical length is $l_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=3.0 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot l_{1}=2 \cdot \pi / \lambda_{2} \cdot l_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.203 \cdot \pi=0.637 ; \tan (\beta \cdot \mathrm{l})=0.740$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{Z^{2}} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=53.72 \Omega+\mathrm{j} \cdot(-2.91) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=28.868 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 11)=2 \pi / 11 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.417 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.652 \angle-167.0^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.553 \angle 137.0^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=148.8^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.720 ; \theta_{\mathrm{p} 1}=120.2^{\circ}$ or $\theta_{\mathrm{S} 2}=18.2^{\circ} ; \operatorname{Im}(\mathrm{ys})=1.720 ; \theta_{\mathrm{p} 2}=59.8^{\circ}$
output: $\theta_{\mathrm{L} 1}=173.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.327 ; \theta_{\mathrm{p} 1}=127.0^{\circ}$ or $\theta_{\mathrm{L} 2}=49.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.327 ; \theta_{\mathrm{p} 2}=53.0^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\text {Smax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.739=2.404 \mathrm{~dB}$; the gain from load match:
$\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.441=1.585 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=3.211=5.067 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.404 \mathrm{~dB}+5.067 \mathrm{~dB}+1.585 \mathrm{~dB}=9.056 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=105 \mu \mathrm{~W}=-9.788 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-9.788 \mathrm{dBm}+9.056 \mathrm{~dB}=-0.732 \mathrm{dBm}=0.845 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.652<1 ;\left|S_{22}\right|=$ $0.553<1 ; \mathrm{K}=1.143>1 ;|\Delta|=|(0.174)+\mathrm{j} \cdot(0.263)|=0.316<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

Subject no. 40

1. $\mathrm{Z}_{\mathrm{L}}=26 \Omega$ series with 0.67 nH inductor at 9.8 GHz . It's easier to compute first: b) $\mathrm{Z}_{\mathrm{L}}=26.00 \Omega+$ $j \cdot(41.26) \Omega, z=Z_{L} / 50 \Omega=0.520+j \cdot(0.825)$ then a) $y=1 / z=0.547+j \cdot(-0.867)$
2. a) $\Gamma=(z-1) /(z+1)=(0.900-j \cdot 0.990-1) /(0.900-j \cdot 0.990+1)$
$\Gamma=(0.172)+\mathrm{j} \cdot(-0.431) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.464 \angle-68.2^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. The quarter wave transformer is designed to match a 65Ω load to a 50Ω source at $\mathrm{f}_{1}=8.2 \mathrm{GHz}$ so $\mathrm{Z}_{1}=$ $\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{Z}_{\mathrm{L}}\right)=57.009 \Omega$ and the line physical length is $\mathrm{l}_{1}=\lambda_{1} / 4=\mathrm{c} / 4 / \mathrm{f}_{1}$.
At $f_{2}=3.0 \mathrm{GHz}$ the characteristic impedance and physical length do not change but $\beta \cdot 1=\beta_{2} \cdot 1_{1}=2 \cdot \pi / \lambda_{2} \cdot 1_{1}$ $=2 \cdot \pi /\left(\mathrm{c} / \mathrm{f}_{2}\right) \cdot\left(\mathrm{c} / 4 / \mathrm{f}_{1}\right)=\pi / 2 \cdot \mathrm{f}_{2} / \mathrm{f}_{1}=0.183 \cdot \pi=0.575 ; \tan (\beta \cdot \mathrm{l})=0.648$
$Z_{\text {in }}=Z_{1} \cdot \frac{Z_{L}+j \cdot Z_{1} \cdot \tan (\beta l)}{Z_{1}+j \cdot Z_{L} \cdot \tan (\beta l)}=59.71 \Omega+\mathrm{j} \cdot(-7.17) \Omega$
4. $\mathrm{R}=\mathrm{G}=0$, thus the line is lossless, $\mathrm{Z}_{0}=\sqrt{L / C}=16.720 \Omega$.

For a section of an open-circuited transmission line $Z_{\text {in }}=-\mathrm{j} \cdot \mathrm{Z}_{0} \cdot \operatorname{ctg}(\beta \cdot \mathrm{l})=1 /(\mathrm{j} \cdot \omega \cdot \mathrm{C})=-\mathrm{j} \cdot 1 / \omega / \mathrm{C} ; \beta \cdot \mathrm{l}=$ $2 \pi / \lambda \cdot(\lambda / 12)=2 \pi / 12 ; \mathrm{C}=\operatorname{tg}(\beta \cdot 1) /(2 \cdot \pi \cdot \mathrm{f}) / \mathrm{Z}_{0}=0.470 \mathrm{pF}$
5. a) $\mathrm{S}_{12}=0$, we have an unilateral transistor, maximum gain match of the source is when $\Gamma_{\mathrm{S}}=\mathrm{S}_{11}{ }^{*} ; \Gamma_{\mathrm{S}}=$ $0.638 \angle-142.4^{\circ}$; Maximum gain match of the load $\Gamma_{\mathrm{L}}=\mathrm{S}_{22}{ }^{*} ; \Gamma_{\mathrm{L}}=0.550 \angle 151.8^{\circ}$
Formulae from L6/2019, S97-101, two solutions for the input match, two solutions for the output match, all lines have $\mathrm{Z}_{0}=50 \Omega$
input: $\theta_{\mathrm{S} 1}=136.0^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-1.657 ; \theta_{\mathrm{p} 1}=121.1^{\circ}$ or $\theta_{\mathrm{S} 2}=6.4^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=1.657 ; \theta_{\mathrm{p} 2}=58.9^{\circ}$
output: $\theta_{\mathrm{L} 1}=165.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-1.317 ; \theta_{\mathrm{p} 1}=127.2^{\circ}$ or $\theta_{\mathrm{L} 2}=42.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=1.317 ; \theta_{\mathrm{p} 2}=52.8^{\circ}$
b) The shunt stubs must be placed in parallel with the 50Ω source/load
c) The gain from source match: $\mathrm{G}_{\text {Smax }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)=1.686=2.270 \mathrm{~dB}$; the gain from load match: $\mathrm{G}_{\mathrm{Lmax}}=1 /\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)=1.434=1.565 \mathrm{~dB} ; \mathrm{G}_{0}=\left|\mathrm{S}_{21}\right|^{2}=2.883=4.599 \mathrm{~dB}$;
The transducer power gain: $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{Smax}}+\mathrm{G}_{0}+\mathrm{G}_{\mathrm{Lmax}}=2.270 \mathrm{~dB}+4.599 \mathrm{~dB}+1.565 \mathrm{~dB}=8.433 \mathrm{~dB}$
d) $\mathrm{P}_{\text {in }}=105 \mu \mathrm{~W}=-9.788 \mathrm{dBm} ; \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }}+\mathrm{G}_{\mathrm{T}}=-9.788 \mathrm{dBm}+8.433 \mathrm{~dB}=-1.355 \mathrm{dBm}=0.732 \mathrm{~mW}$
e) Stability can be analyzed in different ways, in this case the most simple one: $\left|S_{11}\right|=0.638<1 ;\left|S_{22}\right|=$ $0.550<1 ; \mathrm{K}=1.197>1 ;|\Delta|=|(0.265)+\mathrm{j} \cdot(0.072)|=0.274<1$, thus the transistor is unconditionally stable, in particular is stable including the match designed at a)

