Subject no. 1

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=75 \Omega /(35.1+\mathrm{j} \cdot 59.1) \Omega=0.557-\mathrm{j} \cdot 0.938$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0344+\mathrm{j} \cdot 0.0215)] /(0.02+0.0344+\mathrm{j} \cdot 0.0215)$
$\Gamma=(-0.364)+\mathrm{j} \cdot(-0.251) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.442 \angle-145.4^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless coupled line coupler, matched at the input; Isolation $I=23.50 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=3.25 \mathrm{~mW}=5.119 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=5.119 \mathrm{dBm}-23.50 \mathrm{~dB}=-18.38 \mathrm{dBm}=14.517 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.613, \mathrm{Z}_{\mathrm{CE}}=102.09 \Omega, \mathrm{Z}_{\mathrm{CO}}=24.49 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 57) \Omega=53.39 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=57 \Omega$ series with 0.37 pF capacitor at $7.0 \mathrm{GHz}=57.00 \Omega+\mathrm{j} \cdot(-61.45) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=23.12 \Omega+\mathrm{j} \cdot(24.93) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>15.30 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.7+10.9=17.6 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=7.8+8.3=$ $16.1 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=7.8+10.9=18.7 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=8.3+10.9=19.2 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.55 \mathrm{~dB}=1.135, \mathrm{~F}_{2}=0.87 \mathrm{~dB}=1.222, \mathrm{~F}_{3}=1.06 \mathrm{~dB}=1.276, \mathrm{~F}_{4}=1.28 \mathrm{~dB}=1.343, \mathrm{G}_{1}=6.7 \mathrm{~dB}=4.677$, $\mathrm{G}_{2}=7.8 \mathrm{~dB}=6.026 ; \mathrm{F}(1,4)=1.135+(1.343-1) / 4.677=1.208=0.82 \mathrm{~dB} ; \mathrm{F}(2,3)=1.222+$ $(1.276-1) / 6.026=1.279=1.07 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|S_{11}\right|=0.662<1 ;\left|S_{22}\right|=0.516<1 ; K=1.066>1 ;|\Delta|=|(-0.198)+\mathrm{j} \cdot(0.223)|=0.298<1$ $\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=25.61=14.08 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.083 ; \mathrm{C}_{1}=(-0.525)+\mathrm{j} \cdot(-0.116) ; \Gamma_{\mathrm{S}}=(-0.862)+\mathrm{j} \cdot(0.191)=0.883 \angle 167.5^{\circ}$
$\mathrm{B}_{2}=0.739 ; \mathrm{C}_{2}=(-0.171)+\mathrm{j} \cdot(-0.321) ; \Gamma_{\mathrm{L}}=(-0.392)+\mathrm{j} \cdot(0.735)=0.833 \angle 118.1^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=172.3^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-3.769 ; \theta_{\mathrm{p} 1}=104.9^{\circ}$ or $\theta_{\mathrm{S} 2}=20.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=3.769 ; \theta_{\mathrm{p} 2}=75.1^{\circ}$ output: $\theta_{\mathrm{L} 1}=14.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-3.010 ; \theta_{\mathrm{p} 1}=108.4^{\circ}$ or $\theta_{\mathrm{L} 2}=47.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=3.010 ; \theta_{\mathrm{p} 2}=71.6^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=14.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-3.010+(-3.769)=-6.779 ; \theta_{\mathrm{p} 1}=98.4^{\circ} ; \theta_{\mathrm{S} 1}=172.3^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=47.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=3.010+(-3.769)=-0.759 ; \theta_{\mathrm{p} 2}=142.8^{\circ} ; \theta_{\mathrm{S} 1}=172.3^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=14.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-3.010+(3.769)=0.759 ; \theta_{\mathrm{p} 3}=37.2^{\circ} ; \theta_{\mathrm{S} 2}=20.2^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=47.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=3.010+(3.769)=6.779 ; \theta_{\mathrm{p} 4}=81.6^{\circ} ; \theta_{\mathrm{S} 2}=20.2^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=14.2+172.3=186.4 ; \theta_{\mathrm{p}}=98.4 ; \mathrm{A} \sim 18344.4$
e2) $\theta_{\mathrm{s}}=47.8+172.3=220.0 ; \theta_{\mathrm{p}}=142.8 ; \mathrm{A} \sim 31419.6$
e3) $\theta_{\mathrm{s}}=14.2+20.2=34.4 ; \theta_{\mathrm{p}}=37.2 ; \mathrm{A} \sim 1279.9$
e4) $\theta_{\mathrm{s}}=47.8+20.2=68.0 ; \theta_{\mathrm{p}}=81.6 ; \mathrm{A} \sim 5549.2$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 2

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=40 \Omega /(54.8+\mathrm{j} \cdot 60.4) \Omega=0.330-\mathrm{j} \cdot 0.363$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0360-\mathrm{j} \cdot 0.0255)] /(0.02+0.0360-\mathrm{j} \cdot 0.0255)$
$\Gamma=(-0.408)+\mathrm{j} \cdot(0.269) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.489 \angle 146.6^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless ring coupler, matched at the input; Isolation $I=22.80 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=2.70 \mathrm{~mW}=4.314 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=4.314 \mathrm{dBm}-22.80 \mathrm{~dB}=-18.49 \mathrm{dBm}=14.170 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.531, \mathrm{y}_{1}=0.531, \mathrm{y}_{2}=0.847, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=94.2 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=59.0 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 40) \Omega=44.72 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=40 \Omega$ parallel with 0.31 pF capacitor at $7.4 \mathrm{GHz}=30.02 \Omega+\mathrm{j} \cdot(-17.31) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=50.00 \Omega+\mathrm{j} \cdot(28.83) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>16.20 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.3+11.8=18.1 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=7.0+9.5=$ $16.5 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=7.0+11.8=18.8 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=9.5+11.8=21.3 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.54 \mathrm{~dB}=1.132, \mathrm{~F}_{2}=0.88 \mathrm{~dB}=1.225, \mathrm{~F}_{3}=0.99 \mathrm{~dB}=1.256, \mathrm{~F}_{4}=1.12 \mathrm{~dB}=1.294, \mathrm{G}_{1}=6.3 \mathrm{~dB}=4.266$, $\mathrm{G}_{2}=7.0 \mathrm{~dB}=5.012 ; \mathrm{F}(1,4)=1.132+(1.294-1) / 4.266=1.201=0.80 \mathrm{~dB} ; \mathrm{F}(2,3)=1.225+$ $(1.256-1) / 5.012=1.283=1.08 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|S_{11}\right|=0.640<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.181>1 ;|\Delta|=|(0.241)+\mathrm{j} \cdot(0.152)|=0.285<1$ $\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=10.67=10.28 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.026 ; \mathrm{C}_{1}=(-0.406)+\mathrm{j} \cdot(0.298) ; \Gamma_{\mathrm{S}}=(-0.664)+\mathrm{j} \cdot(-0.488)=0.824 \angle-143.7^{\circ}$
$B_{2}=0.812 ; \mathrm{C}_{2}=(-0.361)+\mathrm{j} \cdot(-0.156) ; \Gamma_{\mathrm{L}}=(-0.717)+\mathrm{j} \cdot(0.310)=0.781 \angle 156.6^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=144.6^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-2.906 ; \theta_{\mathrm{p} 1}=109.0^{\circ}$ or $\theta_{\mathrm{S} 2}=179.1^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=2.906 ; \theta_{\mathrm{p} 2}=71.0^{\circ}$ output: $\theta_{\mathrm{L} 1}=172.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.503 ; \theta_{\mathrm{p} 1}=111.8^{\circ}$ or $\theta_{\mathrm{L} 2}=31.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.503 ; \theta_{\mathrm{p} 2}=68.2^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=172.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.503+(-2.906)=-5.408 ; \theta_{\mathrm{p} 1}=100.5^{\circ} ; \theta_{\mathrm{S} 1}=144.6^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=31.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.503+(-2.906)=-0.403 ; \theta_{\mathrm{p} 2}=158.0^{\circ} ; \theta_{\mathrm{S} 1}=144.6^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=172.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.503+(2.906)=0.403 ; \theta_{\mathrm{p} 3}=22.0^{\circ} ; \theta_{\mathrm{S} 2}=179.1^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=31.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.503+(2.906)=5.408 ; \theta_{\mathrm{p} 4}=79.5^{\circ} ; \theta_{\mathrm{S} 2}=179.1^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=172.4+144.6=317.0 ; \theta_{\mathrm{p}}=100.5 ; \mathrm{A} \sim 31846.3$
e2) $\theta_{\mathrm{s}}=31.0+144.6=175.6 ; \theta_{\mathrm{p}}=158.0 ; \mathrm{A} \sim 27749.5$
e3) $\theta_{\mathrm{s}}=172.4+179.1=351.5 ; \theta_{\mathrm{p}}=22.0 ; \mathrm{A} \sim 7719.3$
e4) $\theta_{\mathrm{s}}=31.0+179.1=210.1 ; \theta_{\mathrm{p}}=79.5 ; \mathrm{A} \sim 16710.1$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 3

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=80 \Omega /(39.8-\mathrm{j} \cdot 57.3) \Omega=0.654+\mathrm{j} \cdot 0.942$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0196-\mathrm{j} \cdot 0.0397)] /(0.02+0.0196-\mathrm{j} \cdot 0.0397)$
$\Gamma=(-0.496)+\mathrm{j} \cdot(0.505) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.708 \angle 134.5^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless ring coupler, matched at the input; Isolation $I=24.00 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=2.30 \mathrm{~mW}=3.617 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=3.617 \mathrm{dBm}-24.00 \mathrm{~dB}=-20.38 \mathrm{dBm}=9.156 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.579, \mathrm{y}_{1}=0.579, \mathrm{y}_{2}=0.815, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=86.4 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=61.3 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 57) \Omega=53.39 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=57 \Omega$ series with 0.34 pF capacitor at $8.3 \mathrm{GHz}=57.00 \Omega+\mathrm{j} \cdot(-56.40) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot \mathrm{l}) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=25.27 \Omega+\mathrm{j} \cdot(25.00) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>14.05 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=5.1+11.8=16.9 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.8+8.5=$ $17.3 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.8+11.8=20.6 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=8.5+11.8=20.3 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.50 \mathrm{~dB}=1.122, \mathrm{~F}_{2}=0.84 \mathrm{~dB}=1.213, \mathrm{~F}_{3}=0.99 \mathrm{~dB}=1.256, \mathrm{~F}_{4}=1.15 \mathrm{~dB}=1.303, \mathrm{G}_{1}=5.1 \mathrm{~dB}=3.236$, $\mathrm{G}_{2}=8.8 \mathrm{~dB}=7.586 ; \mathrm{F}(1,4)=1.122+(1.303-1) / 3.236=1.216=0.85 \mathrm{~dB} ; \mathrm{F}(2,3)=1.213+$ $(1.256-1) / 7.586=1.253=0.98 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|S_{11}\right|=0.609<1 ;\left|S_{22}\right|=0.557<1 ; K=1.203>1 ;|\Delta|=|(0.236)+\mathrm{j} \cdot(-0.069)|=0.246<1$ $\left.\mathrm{b}_{-1}\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=8.95=9.52 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.000 ; \mathrm{C}_{1}=(-0.220)+\mathrm{j} \cdot(0.437) ; \Gamma_{\mathrm{S}}=(-0.363)+\mathrm{j} \cdot(-0.721)=0.807 \angle-116.7^{\circ}$
$B_{2}=0.879 ; C_{2}=(-0.424)+\mathrm{j} \cdot(-0.045) ; \Gamma_{L}=(-0.779)+\mathrm{j} \cdot(0.082)=0.783 \angle 174.0^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=130.3^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-2.736 ; \theta_{\mathrm{p} 1}=110.1^{\circ}$ or $\theta_{\mathrm{S} 2}=166.4^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=2.736 ; \theta_{\mathrm{p} 2}=69.9^{\circ}$ output: $\theta_{\mathrm{L} 1}=163.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.517 ; \theta_{\mathrm{p} 1}=111.7^{\circ}$ or $\theta_{\mathrm{L} 2}=22.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.517 ; \theta_{\mathrm{p} 2}=68.3^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{LL} 1}=163.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.517+(-2.736)=-5.252 ; \theta_{\mathrm{p} 1}=100.8^{\circ} ; \theta_{\mathrm{S} 1}=130.3^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=22.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.517+(-2.736)=-0.219 ; \theta_{\mathrm{p} 2}=167.7^{\circ} ; \theta_{\mathrm{S} 1}=130.3^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=163.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.517+(2.736)=0.219 ; \theta_{\mathrm{p} 3}=12.3^{\circ} ; \theta_{\mathrm{S} 2}=166.4^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=22.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.517+(2.736)=5.252 ; \theta_{\mathrm{p} 4}=79.2^{\circ} ; \theta_{\mathrm{S} 2}=166.4^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=163.8+130.3=294.0 ; \theta_{\mathrm{p}}=100.8 ; \mathrm{A} \sim 29634.0$
e2) $\theta_{\mathrm{s}}=22.3+130.3=152.5 ; \theta_{\mathrm{p}}=167.7 ; \mathrm{A} \sim 25570.5$
e3) $\theta_{\mathrm{s}}=163.8+166.4=330.2 ; \theta_{\mathrm{p}}=12.3 ; \mathrm{A} \sim 4077.5$
e4) $\theta_{\mathrm{s}}=22.3+166.4=188.7 ; \theta_{\mathrm{p}}=79.2 ; \mathrm{A} \sim 14948.2$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 4

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=35 \Omega /(37.3+\mathrm{j} \cdot 59.1) \Omega=0.267-\mathrm{j} \cdot 0.424$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0342+\mathrm{j} \cdot 0.0247)] /(0.02+0.0342+\mathrm{j} \cdot 0.0247)$
$\Gamma=(-0.389)+\mathrm{j} \cdot(-0.278) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.478 \angle-144.4^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless ring coupler, matched at the input; Isolation $I=21.60 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=3.25 \mathrm{~mW}=5.119 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=5.119 \mathrm{dBm}-21.60 \mathrm{~dB}=-16.48 \mathrm{dBm}=22.485 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.513, \mathrm{y}_{1}=0.513, \mathrm{y}_{2}=0.858, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=97.5 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=58.2 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 27) \Omega=36.74 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=27 \Omega$ series with 1.24 nH inductor at $8.0 \mathrm{GHz}=27.00 \Omega+\mathrm{j} \cdot(62.33) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, Z_{\text {in }}=Z_{1}^{2} / Z_{L}=Z_{0} \cdot R_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=7.90 \Omega+\mathrm{j} \cdot(-18.24) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>15.30 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.4+11.6=18.0 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.1+8.8=$ $16.9 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.1+11.6=19.7 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=8.8+11.6=20.4 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.64 \mathrm{~dB}=1.159, \mathrm{~F}_{2}=0.83 \mathrm{~dB}=1.211, \mathrm{~F}_{3}=0.98 \mathrm{~dB}=1.253, \mathrm{~F}_{4}=1.27 \mathrm{~dB}=1.340, \mathrm{G}_{1}=6.4 \mathrm{~dB}=4.365$, $\mathrm{G}_{2}=8.1 \mathrm{~dB}=6.457 ; \mathrm{F}(1,4)=1.159+(1.340-1) / 4.365=1.237=0.92 \mathrm{~dB} ; \mathrm{F}(2,3)=1.211+$ $(1.253-1) / 6.457=1.263=1.01 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|\mathrm{S}_{11}\right|=0.640<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.184>1 ;|\Delta|=|(0.251)+\mathrm{j} \cdot(0.130)|=0.283<1$ $\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=10.55=10.23 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.027 ; \mathrm{C}_{1}=(-0.393)+\mathrm{j} \cdot(0.315) ; \Gamma_{\mathrm{S}}=(-0.642)+\mathrm{j} \cdot(-0.515)=0.824 \angle-141.3^{\circ}$
$B_{2}=0.813 ; \mathrm{C}_{2}=(-0.367)+\mathrm{j} \cdot(-0.145) ; \Gamma_{\mathrm{L}}=(-0.726)+\mathrm{j} \cdot(0.288)=0.781 \angle 158.4^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=143.4^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-2.903 ; \theta_{\mathrm{p} 1}=109.0^{\circ}$ or $\theta_{\mathrm{S} 2}=177.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=2.903 ; \theta_{\mathrm{p} 2}=71.0^{\circ}$ output: $\theta_{\mathrm{L} 1}=171.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.501 ; \theta_{\mathrm{p} 1}=111.8^{\circ}$ or $\theta_{\mathrm{L} 2}=30.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.501 ; \theta_{\mathrm{p} 2}=68.2^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=171.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.501+(-2.903)=-5.404 ; \theta_{\mathrm{p} 1}=100.5^{\circ} ; \theta_{\mathrm{S} 1}=143.4^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=30.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.501+(-2.903)=-0.402 ; \theta_{\mathrm{p} 2}=158.1^{\circ} ; \theta_{\mathrm{S} 1}=143.4^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=171.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.501+(2.903)=0.402 ; \theta_{\mathrm{p} 3}=21.9^{\circ} ; \theta_{\mathrm{S} 2}=177.9^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=30.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.501+(2.903)=5.404 ; \theta_{\mathrm{p} 4}=79.5^{\circ} ; \theta_{\mathrm{S} 2}=177.9^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=171.5+143.4=314.8 ; \theta_{\mathrm{p}}=100.5 ; \mathrm{A} \sim 31636.5$
e2) $\theta_{\mathrm{s}}=30.1+143.4=173.5 ; \theta_{\mathrm{p}}=158.1 ; \mathrm{A} \sim 27425.4$
e3) $\theta_{\mathrm{s}}=171.5+177.9=349.4 ; \theta_{\mathrm{p}}=21.9 ; \mathrm{A} \sim 7659.8$
e4) $\theta_{\mathrm{s}}=30.1+177.9=208.1 ; \theta_{\mathrm{p}}=79.5 ; \mathrm{A} \sim 16543.8$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 5

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=85 \Omega /(47.4-\mathrm{j} \cdot 34.1) \Omega=1.182+\mathrm{j} \cdot 0.850$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0142+\mathrm{j} \cdot 0.0265)] /(0.02+0.0142+\mathrm{j} \cdot 0.0265)$
$\Gamma=(-0.269)+\mathrm{j} \cdot(-0.566) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.627 \angle-115.4^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless coupled line coupler, matched at the input; Isolation $I=20.00 \mathrm{~dB}$ $\mathrm{P}_{\text {in }}=2.30 \mathrm{~mW}=3.617 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=3.617 \mathrm{dBm}-20.00 \mathrm{~dB}=-16.38 \mathrm{dBm}=23.000 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.468, \mathrm{Z}_{\mathrm{CE}}=83.03 \Omega, \mathrm{Z}_{\mathrm{CO}}=30.11 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 31) \Omega=39.37 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=31 \Omega$ series with 0.41 pF capacitor at $8.5 \mathrm{GHz}=31.00 \Omega+\mathrm{j} \cdot(-45.67) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot \mathrm{l}) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=15.77 \Omega+\mathrm{j} \cdot(23.23) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>16.75 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.7+10.4=17.1 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=7.4+9.5=$ $16.9 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=7.4+10.4=17.8 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=9.5+10.4=19.9 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.59 \mathrm{~dB}=1.146, \mathrm{~F}_{2}=0.70 \mathrm{~dB}=1.175, \mathrm{~F}_{3}=1.03 \mathrm{~dB}=1.268, \mathrm{~F}_{4}=1.19 \mathrm{~dB}=1.315, \mathrm{G}_{1}=6.7 \mathrm{~dB}=4.677$, $\mathrm{G}_{2}=7.4 \mathrm{~dB}=5.495 ; \mathrm{F}(1,4)=1.146+(1.315-1) / 4.677=1.213=0.84 \mathrm{~dB} ; \mathrm{F}(2,3)=1.175+$ $(1.268-1) / 5.495=1.232=0.91 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|S_{11}\right|=0.634<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.213>1 ;|\Delta|=|(0.264)+\mathrm{j} \cdot(0.026)|=0.265<1$ $\left.\mathrm{b}_{1} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=9.79=9.91 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.327)+\mathrm{j} \cdot(0.383) ; \Gamma_{\mathrm{S}}=(-0.530)+\mathrm{j} \cdot(-0.620)=0.815 \angle-130.5^{\circ}$
$B_{2}=0.830 ; \mathrm{C}_{2}=(-0.389)+\mathrm{j} \cdot(-0.103) ; \Gamma_{\mathrm{L}}=(-0.749)+\mathrm{j} \cdot(0.199)=0.775 \angle 165.1^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=137.6^{\circ} ; \operatorname{Im}(\mathrm{ys})=-2.818 ; \theta_{\mathrm{p} 1}=109.5^{\circ}$ or $\theta_{\mathrm{s} 2}=172.9^{\circ} ; \operatorname{Im}(\mathrm{ys})=2.818 ; \theta_{\mathrm{p} 2}=70.5^{\circ}$ output: $\theta_{\mathrm{L} 1}=167.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.453 ; \theta_{\mathrm{p} 1}=112.2^{\circ}$ or $\theta_{\mathrm{L} 2}=27.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.453 ; \theta_{\mathrm{p} 2}=67.8^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=167.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.453+(-2.818)=-5.271 ; \theta_{\mathrm{p} 1}=100.7^{\circ} ; \theta_{\mathrm{S} 1}=137.6^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=27.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.453+(-2.818)=-0.364 ; \theta_{\mathrm{p} 2}=160.0^{\circ} ; \theta_{\mathrm{S} 1}=137.6^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=167.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.453+(2.818)=0.364 ; \theta_{\mathrm{p} 3}=20.0^{\circ} ; \theta_{\mathrm{S} 2}=172.9^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=27.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.453+(2.818)=5.271 ; \theta_{\mathrm{p} 4}=79.3^{\circ} ; \theta_{\mathrm{S} 2}=172.9^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=167.8+137.6=305.4 ; \theta_{\mathrm{p}}=100.7 ; \mathrm{A} \sim 30768.3$
e2) $\theta_{\mathrm{s}}=27.0+137.6=164.6 ; \theta_{\mathrm{p}}=160.0 ; \mathrm{A} \sim 26332.7$
e3) $\theta_{\mathrm{s}}=167.8+172.9=340.8 ; \theta_{\mathrm{p}}=20.0 ; \mathrm{A} \sim 6823.6$
e4) $\theta_{\mathrm{s}}=27.0+172.9=200.0 ; \theta_{\mathrm{p}}=79.3 ; \mathrm{A} \sim 15849.2$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 6

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=75 \Omega /(42.8+\mathrm{j} \cdot 30.4) \Omega=1.165-\mathrm{j} \cdot 0.827$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0200+\mathrm{j} \cdot 0.0115)] /(0.02+0.0200+\mathrm{j} \cdot 0.0115)$
$\Gamma=(-0.076)+\mathrm{j} \cdot(-0.266) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.276 \angle-106.0^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless coupled line coupler, matched at the input; Isolation $I=D+C=29.40 \mathrm{~dB}$ $\mathrm{P}_{\text {in }}=2.60 \mathrm{~mW}=4.150 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=4.150 \mathrm{dBm}-29.40 \mathrm{~dB}=-25.25 \mathrm{dBm}=2.985 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.462, \mathrm{Z}_{\mathrm{CE}}=82.46 \Omega, \mathrm{Z}_{\mathrm{CO}}=30.32 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 27) \Omega=36.74 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=27 \Omega$ parallel with 0.48 pF capacitor at $6.5 \mathrm{GHz}=21.09 \Omega+\mathrm{j} \cdot(-11.16) \Omega$ $\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=50.00 \Omega+\mathrm{j} \cdot(26.46) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>15.35 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.2+10.7=16.9 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.6+8.5=$ $17.1 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.6+10.7=19.3 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=8.5+10.7=19.2 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.68 \mathrm{~dB}=1.169, \mathrm{~F}_{2}=0.84 \mathrm{~dB}=1.213, \mathrm{~F}_{3}=1.09 \mathrm{~dB}=1.285, \mathrm{~F}_{4}=1.21 \mathrm{~dB}=1.321, \mathrm{G}_{1}=6.2 \mathrm{~dB}=4.169$, $\mathrm{G}_{2}=8.6 \mathrm{~dB}=7.244 ; \mathrm{F}(1,4)=1.169+(1.321-1) / 4.169=1.247=0.96 \mathrm{~dB} ; \mathrm{F}(2,3)=1.213+$ $(1.285-1) / 7.244=1.258=1.00 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|\mathrm{S}_{11}\right|=0.627<1 ;\left|\mathrm{S}_{22}\right|=0.551<1 ; \mathrm{K}=1.227>1 ;|\Delta|=|(0.253)+\mathrm{j} \cdot(-0.026)|=0.255<1$ $\left.b_{\text {_ }} 1\right) \mathrm{G}_{\text {Tmax }}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=9.34=9.70 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.025 ; \mathrm{C}_{1}=(-0.284)+\mathrm{j} \cdot(0.413) ; \Gamma_{\mathrm{S}}=(-0.458)+\mathrm{j} \cdot(-0.667)=0.809 \angle-124.5^{\circ}$
$B_{2}=0.846 ; \mathrm{C}_{2}=(-0.401)+\mathrm{j} \cdot(-0.080) ; \Gamma_{\mathrm{L}}=(-0.758)+\mathrm{j} \cdot(0.151)=0.773 \angle 168.7^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{s} 1}=134.3^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-2.757 ; \theta_{\mathrm{p} 1}=109.9^{\circ}$ or $\theta_{\mathrm{S} 2}=170.2^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=2.757 ; \theta_{\mathrm{p} 2}=70.1^{\circ}$ output: $\theta_{\mathrm{L} 1}=165.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.434 ; \theta_{\mathrm{p} 1}=112.3^{\circ}$ or $\theta_{\mathrm{L} 2}=25.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.434 ; \theta_{\mathrm{p} 2}=67.7^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{LL} 1}=165.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.434+(-2.757)=-5.192 ; \theta_{\mathrm{p} 1}=100.9^{\circ} ; \theta_{\mathrm{S} 1}=134.3^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=25.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.434+(-2.757)=-0.323 ; \theta_{\mathrm{p} 2}=162.1^{\circ} ; \theta_{\mathrm{S} 1}=134.3^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=165.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.434+(2.757)=0.323 ; \theta_{\mathrm{p} 3}=17.9^{\circ} ; \theta_{\mathrm{S} 2}=170.2^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=25.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.434+(2.757)=5.192 ; \theta_{\mathrm{p} 4}=79.1^{\circ} ; \theta_{\mathrm{S} 2}=170.2^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=165.9+134.3=300.2 ; \theta_{\mathrm{p}}=100.9 ; \mathrm{A} \sim 30288.8$
e2) $\theta_{\mathrm{s}}=25.3+134.3=159.6 ; \theta_{\mathrm{p}}=162.1 ; \mathrm{A} \sim 25866.9$
e3) $\theta_{\mathrm{s}}=165.9+170.2=336.1 ; \theta_{\mathrm{p}}=17.9 ; \mathrm{A} \sim 6021.0$
e4) $\theta_{\mathrm{s}}=25.3+170.2=195.5 ; \theta_{\mathrm{p}}=79.1 ; \mathrm{A} \sim 15466.7$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 7

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=30 \Omega /(51.9-\mathrm{j} \cdot 49.5) \Omega=0.303+\mathrm{j} \cdot 0.289$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0327+\mathrm{j} \cdot 0.0259)] /(0.02+0.0327+\mathrm{j} \cdot 0.0259)$
$\Gamma=(-0.389)+\mathrm{j} \cdot(-0.300) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.491 \angle-142.3^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless ring coupler, matched at the input; Isolation $I=24.00 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=1.30 \mathrm{~mW}=1.139 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=1.139 \mathrm{dBm}-24.00 \mathrm{~dB}=-22.86 \mathrm{dBm}=5.175 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.562, \mathrm{y}_{1}=0.562, \mathrm{y}_{2}=0.827, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=88.9 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=60.5 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 31) \Omega=39.37 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=31 \Omega$ parallel with 0.26 pF capacitor at $9.3 \mathrm{GHz}=25.37 \Omega+\mathrm{j} \cdot(-11.95) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, Z_{\text {in }}=Z_{1}^{2} / Z_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=50.00 \Omega+\mathrm{j} \cdot(23.55) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>15.65 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=5.7+10.6=16.3 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=7.3+9.8=$ $17.1 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=7.3+10.6=17.9 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=9.8+10.6=20.4 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.53 \mathrm{~dB}=1.130, \mathrm{~F}_{2}=0.71 \mathrm{~dB}=1.178, \mathrm{~F}_{3}=0.97 \mathrm{~dB}=1.250, \mathrm{~F}_{4}=1.29 \mathrm{~dB}=1.346, \mathrm{G}_{1}=5.7 \mathrm{~dB}=3.715$, $\mathrm{G}_{2}=7.3 \mathrm{~dB}=5.370 ; \mathrm{F}(1,4)=1.130+(1.346-1) / 3.715=1.223=0.87 \mathrm{~dB} ; \mathrm{F}(2,3)=1.178+$ $(1.250-1) / 5.370=1.242=0.94 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|S_{11}\right|=0.653<1 ;\left|S_{22}\right|=0.519<1 ; K=1.090>1 ;|\Delta|=|(-0.149)+\mathrm{j} \cdot(0.243)|=0.285<1$ $\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=23.66=13.74 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.076 ; \mathrm{C}_{1}=(-0.526)+\mathrm{j} \cdot(-0.083) ; \Gamma_{\mathrm{S}}=(-0.856)+\mathrm{j} \cdot(0.135)=0.866 \angle 171.0^{\circ}$ $\mathrm{B}_{2}=0.762 ; \mathrm{C}_{2}=(-0.199)+\mathrm{j} \cdot(-0.316) ; \Gamma_{\mathrm{L}}=(-0.434)+\mathrm{j} \cdot(0.690)=0.815 \angle 122.2^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=169.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-3.465 ; \theta_{\mathrm{p} 1}=106.1^{\circ}$ or $\theta_{\mathrm{S} 2}=19.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=3.465 ; \theta_{\mathrm{p} 2}=73.9^{\circ}$ output: $\theta_{\mathrm{L} 1}=11.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.814 ; \theta_{\mathrm{p} 1}=109.6^{\circ}$ or $\theta_{\mathrm{L} 2}=46.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.814 ; \theta_{\mathrm{p} 2}=70.4^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=11.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.814+(-3.465)=-6.279 ; \theta_{\mathrm{p} 1}=99.0^{\circ} ; \theta_{\mathrm{S} 1}=169.5^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=46.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.814+(-3.465)=-0.651 ; \theta_{\mathrm{p} 2}=146.9^{\circ} ; \theta_{\mathrm{S} 1}=169.5^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=11.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.814+(3.465)=0.651 ; \theta_{\mathrm{p} 3}=33.1^{\circ} ; \theta_{\mathrm{S} 2}=19.5^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=46.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.814+(3.465)=6.279 ; \theta_{\mathrm{p} 4}=81.0^{\circ} ; \theta_{\mathrm{S} 2}=19.5^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=11.2+169.5=180.7 ; \theta_{\mathrm{p}}=99.0 ; \mathrm{A} \sim 17898.3$
e2) $\theta_{\mathrm{s}}=46.6+169.5=216.1 ; \theta_{\mathrm{p}}=146.9 ; \mathrm{A} \sim 31751.0$
e3) $\theta_{\mathrm{s}}=11.2+19.5=30.7 ; \theta_{\mathrm{p}}=33.1 ; \mathrm{A} \sim 1015.2$
e4) $\theta_{\mathrm{s}}=46.6+19.5=66.1 ; \theta_{\mathrm{p}}=81.0 ; \mathrm{A} \sim 5350.6$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 8

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=80 \Omega /(62.2-\mathrm{j} \cdot 51.2) \Omega=0.767+\mathrm{j} \cdot 0.631$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0325-\mathrm{j} \cdot 0.0195)] /(0.02+0.0325-\mathrm{j} \cdot 0.0195)$
$\Gamma=(-0.330)+\mathrm{j} \cdot(0.249) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.414 \angle 143.0^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless coupled line coupler, matched at the input; Isolation $I=D+C=28.25 \mathrm{~dB}$ $\mathrm{P}_{\text {in }}=2.15 \mathrm{~mW}=3.324 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=3.324 \mathrm{dBm}-28.25 \mathrm{~dB}=-24.93 \mathrm{dBm}=3.217 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.449, \mathrm{Z}_{\mathrm{CE}}=81.11 \Omega, \mathrm{Z}_{\mathrm{CO}}=30.82 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 41) \Omega=45.28 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=41 \Omega$ series with 0.88 nH inductor at $8.1 \mathrm{GHz}=41.00 \Omega+\mathrm{j} \cdot(44.79) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}{ }^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=22.80 \Omega+\mathrm{j} \cdot(-24.90) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>16.10 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.5+10.2=16.7 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=7.5+9.1=$ $16.6 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=7.5+10.2=17.7 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=9.1+10.2=19.3 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.51 \mathrm{~dB}=1.125, \mathrm{~F}_{2}=0.83 \mathrm{~dB}=1.211, \mathrm{~F}_{3}=1.03 \mathrm{~dB}=1.268, \mathrm{~F}_{4}=1.17 \mathrm{~dB}=1.309, \mathrm{G}_{1}=6.5 \mathrm{~dB}=4.467$, $\mathrm{G}_{2}=7.5 \mathrm{~dB}=5.623 ; \mathrm{F}(1,4)=1.125+(1.309-1) / 4.467=1.194=0.77 \mathrm{~dB} ; \mathrm{F}(2,3)=1.211+$ $(1.268-1) / 5.623=1.266=1.02 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|\mathrm{S}_{11}\right|=0.605<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.169>1 ;|\Delta|=|(-0.037)+\mathrm{j} \cdot(0.262)|=0.264<1$ $\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=16.34=12.13 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.026 ; \mathrm{C}_{1}=(-0.486)+\mathrm{j} \cdot(0.119) ; \Gamma_{\mathrm{S}}=(-0.778)+\mathrm{j} \cdot(-0.191)=0.801 \angle-166.2^{\circ}$
$B_{2}=0.835 ; \mathrm{C}_{2}=(-0.242)+\mathrm{j} \cdot(-0.321) ; \Gamma_{\mathrm{L}}=(-0.457)+\mathrm{j} \cdot(0.606)=0.759 \angle 127.0^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=154.7^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-2.674 ; \theta_{\mathrm{p} 1}=110.5^{\circ}$ or $\theta_{\mathrm{S} 2}=11.5^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=2.674 ; \theta_{\mathrm{p} 2}=69.5^{\circ}$
output: $\theta_{\mathrm{L} 1}=6.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.333 ; \theta_{\mathrm{p} 1}=113.2^{\circ}$ or $\theta_{\mathrm{L} 2}=46.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.333 ; \theta_{\mathrm{p} 2}=66.8^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=6.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.333+(-2.674)=-5.007 ; \theta_{\mathrm{p} 1}=101.3^{\circ} ; \theta_{\mathrm{S} 1}=154.7^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=46.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.333+(-2.674)=-0.341 ; \theta_{\mathrm{p} 2}=161.2^{\circ} ; \theta_{\mathrm{S} 1}=154.7^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=6.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.333+(2.674)=0.341 ; \theta_{\mathrm{p} 3}=18.8^{\circ} ; \theta_{\mathrm{S} 2}=11.5^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=46.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.333+(2.674)=5.007 ; \theta_{\mathrm{p} 4}=78.7^{\circ} ; \theta_{\mathrm{S} 2}=11.5^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=6.2+154.7=160.9 ; \theta_{\mathrm{p}}=101.3 ; \mathrm{A} \sim 16296.5$
e2) $\theta_{\mathrm{s}}=46.8+154.7=201.5 ; \theta_{\mathrm{p}}=161.2 ; \mathrm{A} \sim 32476.7$
e3) $\theta_{\mathrm{s}}=6.2+11.5=17.7 ; \theta_{\mathrm{p}}=18.8 ; \mathrm{A} \sim 332.6$
e4) $\theta_{\mathrm{s}}=46.8+11.5=58.3 ; \theta_{\mathrm{p}}=78.7$; A ~ 4587.0
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 9

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=70 \Omega /(40.8+\mathrm{j} \cdot 68.5) \Omega=0.449-\mathrm{j} \cdot 0.754$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0236+\mathrm{j} \cdot 0.0112)] /(0.02+0.0236+\mathrm{j} \cdot 0.0112)$
$\Gamma=(-0.139)+\mathrm{j} \cdot(-0.221) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.261 \angle-122.2^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless coupled line coupler, matched at the input; Isolation $I=22.00 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=3.25 \mathrm{~mW}=5.119 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=5.119 \mathrm{dBm}-22.00 \mathrm{~dB}=-16.88 \mathrm{dBm}=20.506 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.572, \mathrm{Z}_{\mathrm{CE}}=95.84 \Omega, \mathrm{Z}_{\mathrm{CO}}=26.08 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 56) \Omega=52.92 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=56 \Omega$ series with 1.05 nH inductor at $9.8 \mathrm{GHz}=56.00 \Omega+\mathrm{j} \cdot(64.65) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, Z_{\text {in }}=Z_{1}{ }^{2} / Z_{L}=Z_{0} \cdot R_{\mathrm{L}} / Z_{\mathrm{L}}=21.43 \Omega+\mathrm{j} \cdot(-24.74) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>15.35 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=5.4+10.3=15.7 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.1+9.9=$ $18.0 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.1+10.3=18.4 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=9.9+10.3=20.2 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.64 \mathrm{~dB}=1.159, \mathrm{~F}_{2}=0.87 \mathrm{~dB}=1.222, \mathrm{~F}_{3}=1.01 \mathrm{~dB}=1.262, \mathrm{~F}_{4}=1.18 \mathrm{~dB}=1.312, \mathrm{G}_{1}=5.4 \mathrm{~dB}=3.467$, $\mathrm{G}_{2}=8.1 \mathrm{~dB}=6.457 ; \mathrm{F}(1,4)=1.159+(1.312-1) / 3.467=1.249=0.96 \mathrm{~dB} ; \mathrm{F}(2,3)=1.222+$ $(1.262-1) / 6.457=1.270=1.04 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|\mathrm{S}_{11}\right|=0.656<1 ;\left|\mathrm{S}_{22}\right|=0.518<1 ; \mathrm{K}=1.082>1 ;|\Delta|=|(-0.166)+\mathrm{j} \cdot(0.237)|=0.289<1$ $\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=24.28=13.85 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.078 ; \mathrm{C}_{1}=(-0.526)+\mathrm{j} \cdot(-0.094) ; \Gamma_{\mathrm{S}}=(-0.858)+\mathrm{j} \cdot(0.154)=0.872 \angle 169.9^{\circ}$
$\mathrm{B}_{2}=0.754 ; \mathrm{C}_{2}=(-0.189)+\mathrm{j} \cdot(-0.318) ; \Gamma_{\mathrm{L}}=(-0.420)+\mathrm{j} \cdot(0.705)=0.821 \angle 120.8^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=170.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-3.557 ; \theta_{\mathrm{p} 1}=105.7^{\circ}$ or $\theta_{\mathrm{S} 2}=19.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=3.557 ; \theta_{\mathrm{p} 2}=74.3^{\circ}$ output: $\theta_{\mathrm{L} 1}=12.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.872 ; \theta_{\mathrm{p} 1}=109.2^{\circ}$ or $\theta_{\mathrm{L} 2}=47.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.872 ; \theta_{\mathrm{p} 2}=70.8^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=12.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.872+(-3.557)=-6.430 ; \theta_{\mathrm{p} 1}=98.8^{\circ} ; \theta_{\mathrm{S} 1}=170.4^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=47.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.872+(-3.557)=-0.685 ; \theta_{\mathrm{p} 2}=145.6^{\circ} ; \theta_{\mathrm{S} 1}=170.4^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=12.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.872+(3.557)=0.685 ; \theta_{\mathrm{p} 3}=34.4^{\circ} ; \theta_{\mathrm{S} 2}=19.7^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=47.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.872+(3.557)=6.430 ; \theta_{\mathrm{p} 4}=81.2^{\circ} ; \theta_{\mathrm{S} 2}=19.7^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=12.2+170.4=182.6 ; \theta_{\mathrm{p}}=98.8 ; \mathrm{A} \sim 18046.2$
e2) $\theta_{\mathrm{s}}=47.0+170.4=217.4 ; \theta_{\mathrm{p}}=145.6 ; \mathrm{A} \sim 31656.0$
e3) $\theta_{\mathrm{s}}=12.2+19.7=31.9 ; \theta_{\mathrm{p}}=34.4 ; \mathrm{A} \sim 1098.5$
e4) $\theta_{\mathrm{s}}=47.0+19.7=66.8 ; \theta_{\mathrm{p}}=81.2 ; \mathrm{A} \sim 5419.4$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 10

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=80 \Omega /(56.3+\mathrm{j} \cdot 57.9) \Omega=0.691-\mathrm{j} \cdot 0.710$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0216+\mathrm{j} \cdot 0.0204)] /(0.02+0.0216+\mathrm{j} \cdot 0.0204)$
$\Gamma=(-0.225)+\mathrm{j} \cdot(-0.380) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.442 \angle-120.6^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless coupled line coupler, matched at the input; Isolation $I=D+C=24.75 \mathrm{~dB}$ $\mathrm{P}_{\text {in }}=2.10 \mathrm{~mW}=3.222 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=3.222 \mathrm{dBm}-24.75 \mathrm{~dB}=-21.53 \mathrm{dBm}=7.034 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.627, \mathrm{Z}_{\mathrm{CE}}=104.48 \Omega, \mathrm{Z}_{\mathrm{CO}}=23.93 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 74) \Omega=60.83 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=74 \Omega$ parallel with 0.30 pF capacitor at $8.8 \mathrm{GHz}=29.52 \Omega+\mathrm{j} \cdot(-36.24) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=50.00 \Omega+\mathrm{j} \cdot(61.37) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>16.35 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.0+10.8=16.8 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.7+9.3=$ $18.0 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.7+10.8=19.5 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=9.3+10.8=20.1 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.57 \mathrm{~dB}=1.140, \mathrm{~F}_{2}=0.77 \mathrm{~dB}=1.194, \mathrm{~F}_{3}=0.98 \mathrm{~dB}=1.253, \mathrm{~F}_{4}=1.24 \mathrm{~dB}=1.330, \mathrm{G}_{1}=6.0 \mathrm{~dB}=3.981$, $\mathrm{G}_{2}=8.7 \mathrm{~dB}=7.413 ; \mathrm{F}(1,4)=1.140+(1.330-1) / 3.981=1.223=0.88 \mathrm{~dB} ; \mathrm{F}(2,3)=1.194+$ $(1.253-1) / 7.413=1.239=0.93 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable:
$\left|\mathrm{S}_{11}\right|=0.621<1 ;\left|\mathrm{S}_{22}\right|=0.553<1 ; \mathrm{K}=1.218>1 ;|\Delta|=|(0.248)+\mathrm{j} \cdot(-0.041)|=0.252<1$
$\left.\mathrm{b}_{-1}\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=9.22=9.65 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.017 ; \mathrm{C}_{1}=(-0.262)+\mathrm{j} \cdot(0.422) ; \Gamma_{\mathrm{S}}=(-0.427)+\mathrm{j} \cdot(-0.687)=0.809 \angle-121.9^{\circ}$
$B_{2}=0.857 ; \mathrm{C}_{2}=(-0.409)+\mathrm{j} \cdot(-0.069) ; \Gamma_{\mathrm{L}}=(-0.766)+\mathrm{j} \cdot(0.128)=0.776 \angle 170.5^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=132.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-2.751 ; \theta_{\mathrm{p} 1}=110.0^{\circ}$ or $\theta_{\mathrm{S} 2}=168.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=2.751 ; \theta_{\mathrm{p} 2}=70.0^{\circ}$ output: $\theta_{\mathrm{L} 1}=165.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.463 ; \theta_{\mathrm{p} 1}=112.1^{\circ}$ or $\theta_{\mathrm{L} 2}=24.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.463 ; \theta_{\mathrm{p} 2}=67.9^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=165.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.463+(-2.751)=-5.214 ; \theta_{\mathrm{p} 1}=100.9^{\circ} ; \theta_{\mathrm{S} 1}=132.9^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=24.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.463+(-2.751)=-0.288 ; \theta_{\mathrm{p} 2}=163.9^{\circ} ; \theta_{\mathrm{S} 1}=132.9^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=165.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.463+(2.751)=0.288 ; \theta_{\mathrm{p} 3}=16.1^{\circ} ; \theta_{\mathrm{S} 2}=168.9^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=24.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.463+(2.751)=5.214 ; \theta_{\mathrm{p} 4}=79.1^{\circ} ; \theta_{\mathrm{S} 2}=168.9^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=165.2+132.9=298.1 ; \theta_{\mathrm{p}}=100.9 ; \mathrm{A} \sim 30070.1$
e2) $\theta_{\mathrm{s}}=24.3+132.9=157.2 ; \theta_{\mathrm{p}}=163.9 ; \mathrm{A} \sim 25772.2$
e3) $\theta_{\mathrm{s}}=165.2+168.9=334.2 ; \theta_{\mathrm{p}}=16.1 ; \mathrm{A} \sim 5373.6$
e4) $\theta_{\mathrm{s}}=24.3+168.9=193.2 ; \theta_{\mathrm{p}}=79.1 ; \mathrm{A} \sim 15293.7$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 11

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=45 \Omega /(43.8+\mathrm{j} \cdot 55.5) \Omega=0.394-\mathrm{j} \cdot 0.500$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0297+\mathrm{j} \cdot 0.0108)] /(0.02+0.0297+\mathrm{j} \cdot 0.0108)$
$\Gamma=(-0.231)+\mathrm{j} \cdot(-0.167) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.285 \angle-144.2^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless quadrature coupler, matched at the input; Isolation $\mathrm{I}=22.80 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=3.60 \mathrm{~mW}=5.563 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=5.563 \mathrm{dBm}-22.80 \mathrm{~dB}=-17.24 \mathrm{dBm}=18.893 \mu \mathrm{~W}$
b) L2, C12/2017, $\beta=10^{-\mathrm{C} / 20}=0.460, \mathrm{y}_{2}=1.126, \mathrm{y}_{1}=0.518, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=96.6 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=44.4 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 54) \Omega=51.96 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=54 \Omega$ series with 0.49 pF capacitor at $7.7 \mathrm{GHz}=54.00 \Omega+\mathrm{j} \cdot(-42.18) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=31.05 \Omega+\mathrm{j} \cdot(24.26) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>15.05 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.6+11.7=18.3 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=7.5+8.1=$ $15.6 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=7.5+11.7=19.2 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=8.1+11.7=19.8 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.50 \mathrm{~dB}=1.122, \mathrm{~F}_{2}=0.88 \mathrm{~dB}=1.225, \mathrm{~F}_{3}=1.01 \mathrm{~dB}=1.262, \mathrm{~F}_{4}=1.15 \mathrm{~dB}=1.303, \mathrm{G}_{1}=6.6 \mathrm{~dB}=4.571$, $\mathrm{G}_{2}=7.5 \mathrm{~dB}=5.623 ; \mathrm{F}(1,4)=1.122+(1.303-1) / 4.571=1.188=0.75 \mathrm{~dB} ; \mathrm{F}(2,3)=1.225+$ $(1.262-1) / 5.623=1.279=1.07 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|S_{11}\right|=0.631<1 ;\left|S_{22}\right|=0.550<1 ; K=1.227>1 ;|\Delta|=|(0.258)+\mathrm{j} \cdot(-0.008)|=0.258<1$ $\left.\mathrm{b}_{-1}\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=9.51=9.78 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.303)+\mathrm{j} \cdot(0.402) ; \Gamma_{\mathrm{S}}=(-0.488)+\mathrm{j} \cdot(-0.649)=0.811 \angle-126.9^{\circ}$
$\mathrm{B}_{2}=0.838 ; \mathrm{C}_{2}=(-0.395)+\mathrm{j} \cdot(-0.090) ; \Gamma_{\mathrm{L}}=(-0.753)+\mathrm{j} \cdot(0.171)=0.772 \angle 167.2^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=135.6^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-2.776 ; \theta_{\mathrm{p} 1}=109.8^{\circ}$ or $\theta_{\mathrm{S} 2}=171.4^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=2.776 ; \theta_{\mathrm{p} 2}=70.2^{\circ}$ output: $\theta_{\mathrm{L} 1}=166.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.430 ; \theta_{\mathrm{p} 1}=112.4^{\circ}$ or $\theta_{\mathrm{L} 2}=26.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.430 ; \theta_{\mathrm{p} 2}=67.6^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=166.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.430+(-2.776)=-5.206 ; \theta_{\mathrm{p} 1}=100.9^{\circ} ; \theta_{\mathrm{S} 1}=135.6^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=26.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.430+(-2.776)=-0.347 ; \theta_{\mathrm{p} 2}=160.9^{\circ} ; \theta_{\mathrm{S} 1}=135.6^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=166.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.430+(2.776)=0.347 ; \theta_{\mathrm{p} 3}=19.1^{\circ} ; \theta_{\mathrm{S} 2}=171.4^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=26.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.430+(2.776)=5.206 ; \theta_{\mathrm{p} 4}=79.1^{\circ} ; \theta_{\mathrm{S} 2}=171.4^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=166.7+135.6=302.3 ; \theta_{\mathrm{p}}=100.9 ; \mathrm{A} \sim 30490.4$
e2) $\theta_{\mathrm{s}}=26.1+135.6=161.7 ; \theta_{\mathrm{p}}=160.9 ; \mathrm{A} \sim 26017.6$
e3) $\theta_{\mathrm{s}}=166.7+171.4=338.0 ; \theta_{\mathrm{p}}=19.1 ; \mathrm{A} \sim 6464.5$
e4) $\theta_{\mathrm{s}}=26.1+171.4=197.5 ; \theta_{\mathrm{p}}=79.1 ; \mathrm{A} \sim 15626.9$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 12

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=70 \Omega /(41.7+\mathrm{j} \cdot 61.5) \Omega=0.529-\mathrm{j} \cdot 0.780$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0379-\mathrm{j} \cdot 0.0114)] /(0.02+0.0379-\mathrm{j} \cdot 0.0114)$
$\Gamma=(-0.335)+\mathrm{j} \cdot(0.131) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.360 \angle 158.6^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless quadrature coupler, matched at the input; Isolation $I=D+C=29.95 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=1.50 \mathrm{~mW}=1.761 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=1.761 \mathrm{dBm}-29.95 \mathrm{~dB}=-28.19 \mathrm{dBm}=1.517 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.487, \mathrm{y}_{2}=1.145, \mathrm{y}_{1}=0.558, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=89.7 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=43.7 \Omega$
4. a) $Z_{1}=\sqrt{ }\left(Z_{0} \cdot R_{L}\right)=\sqrt{ }(50 \cdot 51) \Omega=50.50 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=51 \Omega$ parallel with 0.80 nH inductor at $9.2 \mathrm{GHz}=23.01 \Omega+\mathrm{j} \cdot(25.38) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, Z_{\text {in }}=Z_{1}^{2} / Z_{L}=Z_{0} \cdot R_{L} / Z_{L}=50.00 \Omega+j \cdot(-55.14) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations $(G>15.25 \mathrm{~dB}): \mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.9+10.8=17.7 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=7.7+8.3=$ $16.0 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=7.7+10.8=18.5 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=8.3+10.8=19.1 \mathrm{~dB}$;
b) Friis Formula ($\mathrm{C} 9 / 2017, \mathrm{~S} 92$), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.62 \mathrm{~dB}=1.153, \mathrm{~F}_{2}=0.88 \mathrm{~dB}=1.225, \mathrm{~F}_{3}=1.02 \mathrm{~dB}=1.265, \mathrm{~F}_{4}=1.12 \mathrm{~dB}=1.294, \mathrm{G}_{1}=6.9 \mathrm{~dB}=4.898$, $\mathrm{G}_{2}=7.7 \mathrm{~dB}=5.888 ; \mathrm{F}(1,4)=1.153+(1.294-1) / 4.898=1.214=0.84 \mathrm{~dB} ; \mathrm{F}(2,3)=1.225+$ $(1.265-1) / 5.888=1.275=1.05 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|S_{11}\right|=0.606<1 ;\left|S_{22}\right|=0.558<1 ; \mathrm{K}=1.199>1 ;|\Delta|=|(0.232)+\mathrm{j} \cdot(-0.076)|=0.244<1$ b_1) $\mathrm{G}_{\operatorname{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=8.90=9.49 \mathrm{~dB}$
b_2) Complex calculus from $\mathrm{C} 8 / 2017, \mathrm{~S} 106$:
$\mathrm{B}_{1}=0.996 ; \mathrm{C}_{1}=(-0.209)+\mathrm{j} \cdot(0.440) ; \Gamma_{\mathrm{S}}=(-0.346)+\mathrm{j} \cdot(-0.729)=0.807 \angle-115.4^{\circ}$
$\mathrm{B}_{2}=0.884 ; \mathrm{C}_{2}=(-0.428)+\mathrm{j} \cdot(-0.039) ; \Gamma_{\mathrm{L}}=(-0.782)+\mathrm{j} \cdot(0.071)=0.785 \angle 174.8^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=129.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-2.735 ; \theta_{\mathrm{p} 1}=110.1^{\circ}$ or $\theta_{\mathrm{S} 2}=165.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=2.735 ; \theta_{\mathrm{p} 2}=69.9^{\circ}$ output: $\theta_{\mathrm{L} 1}=163.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.533 ; \theta_{\mathrm{p} 1}=111.5^{\circ}$ or $\theta_{\mathrm{L} 2}=21.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.533 ; \theta_{\mathrm{p} 2}=68.5^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=163.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.533+(-2.735)=-5.267 ; \theta_{\mathrm{p} 1}=100.7^{\circ} ; \theta_{\mathrm{S} 1}=129.6^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=21.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.533+(-2.735)=-0.202 ; \theta_{\mathrm{p} 2}=168.6^{\circ} ; \theta_{\mathrm{S} 1}=129.6^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=163.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.533+(2.735)=0.202 ; \theta_{\mathrm{p} 3}=11.4^{\circ} ; \theta_{\mathrm{S} 2}=165.8^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=21.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.533+(2.735)=5.267 ; \theta_{\mathrm{p} 4}=79.3^{\circ} ; \theta_{\mathrm{S} 2}=165.8^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=163.4+129.6=293.0 ; \theta_{\mathrm{p}}=100.7 ; \mathrm{A} \sim 29524.2$
e2) $\theta_{\mathrm{s}}=21.7+129.6=151.3 ; \theta_{\mathrm{p}}=168.6 ; \mathrm{A} \sim 25514.5$
e3) $\theta_{\mathrm{s}}=163.4+165.8=329.2 ; \theta_{\mathrm{p}}=11.4 ; \mathrm{A} \sim 3757.0$
e4) $\theta_{\mathrm{s}}=21.7+165.8=187.5 ; \theta_{\mathrm{p}}=79.3 ; \mathrm{A} \sim 14861.2$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 13

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=60 \Omega /(60.6-\mathrm{j} \cdot 60.9) \Omega=0.493+\mathrm{j} \cdot 0.495$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0283+\mathrm{j} \cdot 0.0144)] /(0.02+0.0283+\mathrm{j} \cdot 0.0144)$
$\Gamma=(-0.239)+\mathrm{j} \cdot(-0.227) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.330 \angle-136.6^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless coupled line coupler, matched at the input; Isolation $I=23.50 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=3.15 \mathrm{~mW}=4.983 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=4.983 \mathrm{dBm}-23.50 \mathrm{~dB}=-18.52 \mathrm{dBm}=14.071 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.613, \mathrm{Z}_{\mathrm{CE}}=102.09 \Omega, \mathrm{Z}_{\mathrm{CO}}=24.49 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 29) \Omega=38.08 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=29 \Omega$ series with 0.60 nH inductor at $8.4 \mathrm{GHz}=29.00 \Omega+\mathrm{j} \cdot(31.67) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}{ }^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=22.81 \Omega+\mathrm{j} \cdot(-24.90) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>17.50 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.1+11.6=17.7 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.8+9.8=$ $18.6 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.8+11.6=20.4 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=9.8+11.6=21.4 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.52 \mathrm{~dB}=1.127, \mathrm{~F}_{2}=0.85 \mathrm{~dB}=1.216, \mathrm{~F}_{3}=1.06 \mathrm{~dB}=1.276, \mathrm{~F}_{4}=1.10 \mathrm{~dB}=1.288, \mathrm{G}_{1}=6.1 \mathrm{~dB}=4.074$, $\mathrm{G}_{2}=8.8 \mathrm{~dB}=7.586 ; \mathrm{F}(1,4)=1.127+(1.288-1) / 4.074=1.198=0.78 \mathrm{~dB} ; \mathrm{F}(2,3)=1.216+$ $(1.276-1) / 7.586=1.254=0.98 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|S_{11}\right|=0.640<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.187>1 ;|\Delta|=|(0.259)+\mathrm{j} \cdot(0.107)|=0.280<1$ $\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=10.43=10.18 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.028 ; \mathrm{C}_{1}=(-0.380)+\mathrm{j} \cdot(0.332) ; \Gamma_{\mathrm{S}}=(-0.620)+\mathrm{j} \cdot(-0.542)=0.823 \angle-138.8^{\circ}$
$B_{2}=0.814 ; \mathrm{C}_{2}=(-0.371)+\mathrm{j} \cdot(-0.134) ; \Gamma_{\mathrm{L}}=(-0.734)+\mathrm{j} \cdot(0.265)=0.781 \angle 160.1^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=142.1^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-2.900 ; \theta_{\mathrm{p} 1}=109.0^{\circ}$ or $\theta_{\mathrm{S} 2}=176.7^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=2.900 ; \theta_{\mathrm{p} 2}=71.0^{\circ}$ output: $\theta_{\mathrm{L} 1}=170.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.499 ; \theta_{\mathrm{p} 1}=111.8^{\circ}$ or $\theta_{\mathrm{L} 2}=29.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.499 ; \theta_{\mathrm{p} 2}=68.2^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=170.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.499+(-2.900)=-5.399 ; \theta_{\mathrm{p} 1}=100.5^{\circ} ; \theta_{\mathrm{S} 1}=142.1^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=29.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.499+(-2.900)=-0.402 ; \theta_{\mathrm{p} 2}=158.1^{\circ} ; \theta_{\mathrm{S} 1}=142.1^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=170.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.499+(2.900)=0.402 ; \theta_{\mathrm{p} 3}=21.9^{\circ} ; \theta_{\mathrm{S} 2}=176.7^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=29.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.499+(2.900)=5.399 ; \theta_{\mathrm{p} 4}=79.5^{\circ} ; \theta_{\mathrm{S} 2}=176.7^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=170.6+142.1=312.7 ; \theta_{\mathrm{p}}=100.5 ; \mathrm{A} \sim 31426.9$
e2) $\theta_{\mathrm{s}}=29.3+142.1=171.4 ; \theta_{\mathrm{p}}=158.1 ; \mathrm{A} \sim 27101.5$
e3) $\theta_{\mathrm{s}}=170.6+176.7=347.3 ; \theta_{\mathrm{p}}=21.9 ; \mathrm{A} \sim 7599.9$
e4) $\theta_{\mathrm{s}}=29.3+176.7=206.0 ; \theta_{\mathrm{p}}=79.5 ; \mathrm{A} \sim 16377.5$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 14

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=100 \Omega /(53.9-\mathrm{j} \cdot 68.9) \Omega=0.704+\mathrm{j} \cdot 0.900$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0337-\mathrm{j} \cdot 0.0358)] /(0.02+0.0337-\mathrm{j} \cdot 0.0358)$
$\Gamma=(-0.484)+\mathrm{j} \cdot(0.344) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.594 \angle 144.6^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless quadrature coupler, matched at the input; Isolation $I=22.80 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=2.90 \mathrm{~mW}=4.624 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=4.624 \mathrm{dBm}-22.80 \mathrm{~dB}=-18.18 \mathrm{dBm}=15.219 \mu \mathrm{~W}$
b) L2, C12/2017, $\beta=10^{-\mathrm{C} / 20}=0.510, \mathrm{y}_{2}=1.162, \mathrm{y}_{1}=0.593, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=84.3 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=43.0 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 29) \Omega=38.08 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=29 \Omega$ series with 0.46 pF capacitor at $7.1 \mathrm{GHz}=29.00 \Omega+\mathrm{j} \cdot(-48.73) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=13.08 \Omega+\mathrm{j} \cdot(21.97) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>17.00 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.5+10.6=17.1 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.8+9.7=$ $18.5 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.8+10.6=19.4 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=9.7+10.6=20.3 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.65 \mathrm{~dB}=1.161, \mathrm{~F}_{2}=0.73 \mathrm{~dB}=1.183, \mathrm{~F}_{3}=1.05 \mathrm{~dB}=1.274, \mathrm{~F}_{4}=1.14 \mathrm{~dB}=1.300, \mathrm{G}_{1}=6.5 \mathrm{~dB}=4.467$, $\mathrm{G}_{2}=8.8 \mathrm{~dB}=7.586 ; \mathrm{F}(1,4)=1.161+(1.300-1) / 4.467=1.229=0.89 \mathrm{~dB} ; \mathrm{F}(2,3)=1.183+$ $(1.274-1) / 7.586=1.223=0.87 \mathrm{~dB}$;
$\mathrm{F}(1,4)>\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 2,3
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|S_{11}\right|=0.637<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.201>1 ;|\Delta|=|(0.265)+\mathrm{j} \cdot(0.060)|=0.272<1$ $\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=10.08=10.03 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.351)+\mathrm{j} \cdot(0.363) ; \Gamma_{\mathrm{S}}=(-0.570)+\mathrm{j} \cdot(-0.589)=0.819 \angle-134.1^{\circ}$
$\mathrm{B}_{2}=0.823 ; \mathrm{C}_{2}=(-0.381)+\mathrm{j} \cdot(-0.116) ; \Gamma_{\mathrm{L}}=(-0.744)+\mathrm{j} \cdot(0.227)=0.778 \angle 163.0^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=139.5^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-2.858 ; \theta_{\mathrm{p} 1}=109.3^{\circ}$ or $\theta_{\mathrm{S} 2}=174.5^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=2.858 ; \theta_{\mathrm{p} 2}=70.7^{\circ}$ output: $\theta_{\mathrm{L} 1}=169.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.475 ; \theta_{\mathrm{p} 1}=112.0^{\circ}$ or $\theta_{\mathrm{L} 2}=27.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.475 ; \theta_{\mathrm{p} 2}=68.0^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{LL} 1}=169.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.475+(-2.858)=-5.333 ; \theta_{\mathrm{p} 1}=100.6^{\circ} ; \theta_{\mathrm{S} 1}=139.5^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=27.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.475+(-2.858)=-0.383 ; \theta_{\mathrm{p} 2}=159.1^{\circ} ; \theta_{\mathrm{S} 1}=139.5^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=169.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.475+(2.858)=0.383 ; \theta_{\mathrm{p} 3}=20.9^{\circ} ; \theta_{\mathrm{S} 2}=174.5^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=27.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.475+(2.858)=5.333 ; \theta_{\mathrm{p} 4}=79.4^{\circ} ; \theta_{\mathrm{S} 2}=174.5^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=169.0+139.5=308.5 ; \theta_{\mathrm{p}}=100.6 ; \mathrm{A} \sim 31045.6$
e2) $\theta_{\mathrm{s}}=27.9+139.5=167.5 ; \theta_{\mathrm{p}}=159.1 ; \mathrm{A} \sim 26640.4$
e3) $\theta_{\mathrm{s}}=169.0+174.5=343.5 ; \theta_{\mathrm{p}}=20.9 ; \mathrm{A} \sim 7191.6$
e4) $\theta_{\mathrm{s}}=27.9+174.5=202.5 ; \theta_{\mathrm{p}}=79.4 ; \mathrm{A} \sim 16071.8$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 15

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=100 \Omega /(54.6+\mathrm{j} \cdot 52.3) \Omega=0.955-\mathrm{j} \cdot 0.915$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0240+\mathrm{j} \cdot 0.0187)] /(0.02+0.0240+\mathrm{j} \cdot 0.0187)$
$\Gamma=(-0.230)+\mathrm{j} \cdot(-0.327) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.400 \angle-125.1^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless coupled line coupler, matched at the input; Isolation $I=21.10 \mathrm{~dB}$ $\mathrm{P}_{\text {in }}=2.05 \mathrm{~mW}=3.118 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=3.118 \mathrm{dBm}-21.10 \mathrm{~dB}=-17.98 \mathrm{dBm}=15.913 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.465, \mathrm{Z}_{\mathrm{CE}}=82.74 \Omega, \mathrm{Z}_{\mathrm{CO}}=30.21 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 59) \Omega=54.31 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=59 \Omega$ parallel with 0.91 nH inductor at $9.0 \mathrm{GHz}=25.49 \Omega+\mathrm{j} \cdot(29.23) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}{ }^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=50.00 \Omega+\mathrm{j} \cdot(-57.33) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>16.25 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.7+10.0=16.7 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.9+9.5=$ $18.4 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.9+10.0=18.9 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=9.5+10.0=19.5 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.66 \mathrm{~dB}=1.164, \mathrm{~F}_{2}=0.75 \mathrm{~dB}=1.189, \mathrm{~F}_{3}=0.99 \mathrm{~dB}=1.256, \mathrm{~F}_{4}=1.13 \mathrm{~dB}=1.297, \mathrm{G}_{1}=6.7 \mathrm{~dB}=4.677$, $\mathrm{G}_{2}=8.9 \mathrm{~dB}=7.762 ; \mathrm{F}(1,4)=1.164+(1.297-1) / 4.677=1.228=0.89 \mathrm{~dB} ; \mathrm{F}(2,3)=1.189+$ $(1.256-1) / 7.762=1.227=0.89 \mathrm{~dB}$;
$\mathrm{F}(1,4)>\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 2,3
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|\mathrm{S}_{11}\right|=0.630<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.231>1 ;|\Delta|=|(0.255)+\mathrm{j} \cdot(-0.019)|=0.256<1$ $\left.b_{\text {_ }} 1\right) \mathrm{G}_{\text {Tmax }}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=9.41=9.74 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.294)+\mathrm{j} \cdot(0.408) ; \Gamma_{\mathrm{S}}=(-0.473)+\mathrm{j} \cdot(-0.657)=0.810 \angle-125.8^{\circ}$
$\mathrm{B}_{2}=0.840 ; \mathrm{C}_{2}=(-0.397)+\mathrm{j} \cdot(-0.085) ; \Gamma_{\mathrm{L}}=(-0.754)+\mathrm{j} \cdot(0.162)=0.771 \angle 167.9^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=134.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-2.762 ; \theta_{\mathrm{p} 1}=109.9^{\circ}$ or $\theta_{\mathrm{S} 2}=170.8^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=2.762 ; \theta_{\mathrm{p} 2}=70.1^{\circ}$ output: $\theta_{\mathrm{L} 1}=166.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.421 ; \theta_{\mathrm{p} 1}=112.4^{\circ}$ or $\theta_{\mathrm{L} 2}=25.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.421 ; \theta_{\mathrm{p} 2}=67.6^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=166.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.421+(-2.762)=-5.183 ; \theta_{\mathrm{p} 1}=100.9^{\circ} ; \theta_{\mathrm{S} 1}=134.9^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=25.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.421+(-2.762)=-0.341 ; \theta_{\mathrm{p} 2}=161.2^{\circ} ; \theta_{\mathrm{S} 1}=134.9^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=166.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.421+(2.762)=0.341 ; \theta_{\mathrm{p} 3}=18.8^{\circ} ; \theta_{\mathrm{S} 2}=170.8^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=25.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.421+(2.762)=5.183 ; \theta_{\mathrm{p} 4}=79.1^{\circ} ; \theta_{\mathrm{S} 2}=170.8^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=166.3+134.9=301.2 ; \theta_{\mathrm{p}}=100.9 ; \mathrm{A} \sim 30397.8$
e2) $\theta_{\mathrm{s}}=25.8+134.9=160.8 ; \theta_{\mathrm{p}}=161.2 ; \mathrm{A} \sim 25911.5$
e3) $\theta_{\mathrm{s}}=166.3+170.8=337.1 ; \theta_{\mathrm{p}}=18.8 ; \mathrm{A} \sim 6345.9$
e4) $\theta_{\mathrm{s}}=25.8+170.8=196.7 ; \theta_{\mathrm{p}}=79.1 ; \mathrm{A} \sim 15553.0$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 16

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=70 \Omega /(68.4-\mathrm{j} \cdot 60.3) \Omega=0.576+\mathrm{j} \cdot 0.508$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0210+\mathrm{j} \cdot 0.0388)] /(0.02+0.0210+\mathrm{j} \cdot 0.0388)$
$\Gamma=(-0.485)+\mathrm{j} \cdot(-0.487) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.688 \angle-134.9^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless coupled line coupler, matched at the input; Isolation $I=D+C=25.45 \mathrm{~dB}$ $\mathrm{P}_{\text {in }}=2.05 \mathrm{~mW}=3.118 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=3.118 \mathrm{dBm}-25.45 \mathrm{~dB}=-22.33 \mathrm{dBm}=5.845 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.599, \mathrm{Z}_{\mathrm{CE}}=99.86 \Omega, \mathrm{Z}_{\mathrm{CO}}=25.04 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 72) \Omega=60.00 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=72 \Omega$ series with 0.67 nH inductor at $9.0 \mathrm{GHz}=72.00 \Omega+\mathrm{j} \cdot(37.89) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}{ }^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=39.16 \Omega+\mathrm{j} \cdot(-20.61) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>15.80 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=5.2+11.0=16.2 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=7.7+8.9=$ $16.6 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=7.7+11.0=18.7 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=8.9+11.0=19.9 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.60 \mathrm{~dB}=1.148, \mathrm{~F}_{2}=0.77 \mathrm{~dB}=1.194, \mathrm{~F}_{3}=1.01 \mathrm{~dB}=1.262, \mathrm{~F}_{4}=1.12 \mathrm{~dB}=1.294, \mathrm{G}_{1}=5.2 \mathrm{~dB}=3.311$, $\mathrm{G}_{2}=7.7 \mathrm{~dB}=5.888 ; \mathrm{F}(1,4)=1.148+(1.294-1) / 3.311=1.237=0.92 \mathrm{~dB} ; \mathrm{F}(2,3)=1.194+$ $(1.262-1) / 5.888=1.244=0.95 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable:
$\left|\mathrm{S}_{11}\right|=0.599<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.191>1 ;|\Delta|=|(-0.015)+\mathrm{j} \cdot(0.257)|=0.258<1$
$\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=15.60=11.93 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.022 ; \mathrm{C}_{1}=(-0.476)+\mathrm{j} \cdot(0.142) ; \Gamma_{\mathrm{S}}=(-0.756)+\mathrm{j} \cdot(-0.226)=0.789 \angle-163.4^{\circ}$
$\mathrm{B}_{2}=0.845 ; \mathrm{C}_{2}=(-0.251)+\mathrm{j} \cdot(-0.318) ; \Gamma_{\mathrm{L}}=(-0.464)+\mathrm{j} \cdot(0.588)=0.749 \angle 128.3^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines
input: $\theta_{\mathrm{S} 1}=152.7^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-2.569 ; \theta_{\mathrm{p} 1}=111.3^{\circ}$ or $\theta_{\mathrm{s} 2}=10.6^{\circ} ; \operatorname{Im}(\mathrm{ys})=2.569 ; \theta_{\mathrm{p} 2}=68.7^{\circ}$
output: $\theta_{\mathrm{L} 1}=5.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.261 ; \theta_{\mathrm{p} 1}=113.9^{\circ}$ or $\theta_{\mathrm{L} 2}=46.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.261 ; \theta_{\mathrm{p} 2}=66.1^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=5.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.261+(-2.569)=-4.831 ; \theta_{\mathrm{p} 1}=101.7^{\circ} ; \theta_{\mathrm{S} 1}=152.7^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=46.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.261+(-2.569)=-0.308 ; \theta_{\mathrm{p} 2}=162.9^{\circ} ; \theta_{\mathrm{S} 1}=152.7^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=5.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.261+(2.569)=0.308 ; \theta_{\mathrm{p} 3}=17.1^{\circ} ; \theta_{\mathrm{S} 2}=10.6^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=46.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.261+(2.569)=4.831 ; \theta_{\mathrm{p} 4}=78.3^{\circ} ; \theta_{\mathrm{S} 2}=10.6^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=5.1+152.7=157.9 ; \theta_{\mathrm{p}}=101.7 ; \mathrm{A} \sim 16053.6$
e2) $\theta_{\mathrm{s}}=46.6+152.7=199.3 ; \theta_{\mathrm{p}}=162.9 ; \mathrm{A} \sim 32469.7$
e3) $\theta_{\mathrm{s}}=5.1+10.6=15.8 ; \theta_{\mathrm{p}}=17.1 ; \mathrm{A} \sim 269.8$
e4) $\theta_{\mathrm{s}}=46.6+10.6=57.2 ; \theta_{\mathrm{p}}=78.3 ; \mathrm{A} \sim 4482.7$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 17

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=90 \Omega /(41.2+\mathrm{j} \cdot 37.4) \Omega=1.198-\mathrm{j} \cdot 1.087$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0195+\mathrm{j} \cdot 0.0299)] /(0.02+0.0195+\mathrm{j} \cdot 0.0299)$
$\Gamma=(-0.356)+\mathrm{j} \cdot(-0.487) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.604 \angle-126.2^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless quadrature coupler, matched at the input; Isolation $\mathrm{I}=\mathrm{D}+\mathrm{C}=28.95 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=3.10 \mathrm{~mW}=4.914 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=4.914 \mathrm{dBm}-28.95 \mathrm{~dB}=-24.04 \mathrm{dBm}=3.948 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.465, \mathrm{y}_{2}=1.130, \mathrm{y}_{1}=0.525, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=95.2 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=44.3 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 50) \Omega=50.00 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=50 \Omega$ series with 0.78 nH inductor at $9.6 \mathrm{GHz}=50.00 \Omega+\mathrm{j} \cdot(47.05) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, Z_{\text {in }}=Z_{1}{ }^{2} / Z_{L}=Z_{0} \cdot R_{L} / Z_{L}=26.52 \Omega+j \cdot(-24.95) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>14.95 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=5.2+11.0=16.2 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.7+8.0=$ $16.7 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.7+11.0=19.7 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=8.0+11.0=19.0 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.53 \mathrm{~dB}=1.130, \mathrm{~F}_{2}=0.75 \mathrm{~dB}=1.189, \mathrm{~F}_{3}=1.05 \mathrm{~dB}=1.274, \mathrm{~F}_{4}=1.22 \mathrm{~dB}=1.324, \mathrm{G}_{1}=5.2 \mathrm{~dB}=3.311$, $\mathrm{G}_{2}=8.7 \mathrm{~dB}=7.413 ; \mathrm{F}(1,4)=1.130+(1.324-1) / 3.311=1.228=0.89 \mathrm{~dB} ; \mathrm{F}(2,3)=1.189+$ $(1.274-1) / 7.413=1.232=0.91 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|S_{11}\right|=0.603<1 ;\left|S_{22}\right|=0.559<1 ; K=1.195>1 ;|\Delta|=|(0.229)+\mathrm{j} \cdot(-0.082)|=0.243<1$ $\left.b_{\text {b }} 1\right) \mathrm{G}_{\text {Tmax }}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=8.83=9.46 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=0.992 ; \mathrm{C}_{1}=(-0.198)+\mathrm{j} \cdot(0.443) ; \Gamma_{\mathrm{S}}=(-0.329)+\mathrm{j} \cdot(-0.736)=0.807 \angle-114.1^{\circ}$
$\mathrm{B}_{2}=0.890 ; \mathrm{C}_{2}=(-0.431)+\mathrm{j} \cdot(-0.032) ; \Gamma_{\mathrm{L}}=(-0.784)+\mathrm{j} \cdot(0.059)=0.786 \angle 175.7^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{s} 1}=128.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-2.731 ; \theta_{\mathrm{p} 1}=110.1^{\circ}$ or $\theta_{\mathrm{S} 2}=165.2^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=2.731 ; \theta_{\mathrm{p} 2}=69.9^{\circ}$ output: $\theta_{\mathrm{L} 1}=163.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.546 ; \theta_{\mathrm{p} 1}=111.4^{\circ}$ or $\theta_{\mathrm{L} 2}=21.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.546 ; \theta_{\mathrm{p} 2}=68.6^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=163.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.546+(-2.731)=-5.277 ; \theta_{\mathrm{p} 1}=100.7^{\circ} ; \theta_{\mathrm{S} 1}=128.9^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=21.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.546+(-2.731)=-0.185 ; \theta_{\mathrm{p} 2}=169.5^{\circ} ; \theta_{\mathrm{S} 1}=128.9^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=163.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.546+(2.731)=0.185 ; \theta_{\mathrm{p} 3}=10.5^{\circ} ; \theta_{\mathrm{S} 2}=165.2^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=21.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.546+(2.731)=5.277 ; \theta_{\mathrm{p} 4}=79.3^{\circ} ; \theta_{\mathrm{S} 2}=165.2^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=163.1+128.9=292.0 ; \theta_{\mathrm{p}}=100.7 ; \mathrm{A} \sim 29415.1$
e2) $\theta_{\mathrm{s}}=21.2+128.9=150.2 ; \theta_{\mathrm{p}}=169.5 ; \mathrm{A} \sim 25458.6$
e3) $\theta_{\mathrm{s}}=163.1+165.2=328.2 ; \theta_{\mathrm{p}}=10.5 ; \mathrm{A} \sim 3435.4$
e4) $\theta_{\mathrm{s}}=21.2+165.2=186.4 ; \theta_{\mathrm{p}}=79.3 ; \mathrm{A} \sim 14774.7$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 18

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=30 \Omega /(69.2-\mathrm{j} \cdot 53.4) \Omega=0.272+\mathrm{j} \cdot 0.210$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0133-\mathrm{j} \cdot 0.0316)] /(0.02+0.0133-\mathrm{j} \cdot 0.0316)$
$\Gamma=(-0.368)+\mathrm{j} \cdot(0.600) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.704 \angle 121.5^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless ring coupler, matched at the input; Isolation $I=D+C=31.10 \mathrm{~dB}$ $\mathrm{P}_{\text {in }}=3.45 \mathrm{~mW}=5.378 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=5.378 \mathrm{dBm}-31.10 \mathrm{~dB}=-25.72 \mathrm{dBm}=2.678 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.473, \mathrm{y}_{1}=0.473, \mathrm{y}_{2}=0.881, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=105.7 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=56.8 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 71) \Omega=59.58 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=71 \Omega$ parallel with 0.42 pF capacitor at $9.9 \mathrm{GHz}=15.99 \Omega+\mathrm{j} \cdot(-29.66) \Omega$ $\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=50.00 \Omega+\mathrm{j} \cdot(92.75) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>14.75 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=5.9+11.1=17.0 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.6+8.8=$ $17.4 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.6+11.1=19.7 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=8.8+11.1=19.9 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.55 \mathrm{~dB}=1.135, \mathrm{~F}_{2}=0.86 \mathrm{~dB}=1.219, \mathrm{~F}_{3}=0.90 \mathrm{~dB}=1.230, \mathrm{~F}_{4}=1.13 \mathrm{~dB}=1.297, \mathrm{G}_{1}=5.9 \mathrm{~dB}=3.890$, $\mathrm{G}_{2}=8.6 \mathrm{~dB}=7.244 ; \mathrm{F}(1,4)=1.135+(1.297-1) / 3.890=1.211=0.83 \mathrm{~dB} ; \mathrm{F}(2,3)=1.219+$ $(1.230-1) / 7.244=1.260=1.00 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable:
$\left|\mathrm{S}_{11}\right|=0.608<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.157>1 ;|\Delta|=|(-0.048)+\mathrm{j} \cdot(0.263)|=0.267<1$
$\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=16.74=12.24 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.028 ; \mathrm{C}_{1}=(-0.491)+\mathrm{j} \cdot(0.108) ; \Gamma_{\mathrm{S}}=(-0.788)+\mathrm{j} \cdot(-0.173)=0.807 \angle-167.6^{\circ}$
$B_{2}=0.829 ; C_{2}=(-0.238)+\mathrm{j} \cdot(-0.322) ; \Gamma_{L}=(-0.454)+\mathrm{j} \cdot(0.615)=0.765 \angle 126.4^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=155.7^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-2.732 ; \theta_{\mathrm{p} 1}=110.1^{\circ}$ or $\theta_{\mathrm{S} 2}=11.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=2.732 ; \theta_{\mathrm{p} 2}=69.9^{\circ}$ output: $\theta_{\mathrm{L} 1}=6.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.373 ; \theta_{\mathrm{p} 1}=112.8^{\circ}$ or $\theta_{\mathrm{L} 2}=46.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.373 ; \theta_{\mathrm{p} 2}=67.2^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=6.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.373+(-2.732)=-5.105 ; \theta_{\mathrm{p} 1}=101.1^{\circ} ; \theta_{\mathrm{S} 1}=155.7^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=46.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.373+(-2.732)=-0.358 ; \theta_{\mathrm{p} 2}=160.3^{\circ} ; \theta_{\mathrm{S} 1}=155.7^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=6.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.373+(2.732)=0.358 ; \theta_{\mathrm{p} 3}=19.7^{\circ} ; \theta_{\mathrm{S} 2}=11.9^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=46.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.373+(2.732)=5.105 ; \theta_{\mathrm{p} 4}=78.9^{\circ} ; \theta_{\mathrm{S} 2}=11.9^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=6.7+155.7=162.4 ; \theta_{\mathrm{p}}=101.1 ; \mathrm{A} \sim 16418.7$
e2) $\theta_{\mathrm{s}}=46.8+155.7=202.5 ; \theta_{\mathrm{p}}=160.3 ; \mathrm{A} \sim 32468.6$
e3) $\theta_{\mathrm{s}}=6.7+11.9=18.6 ; \theta_{\mathrm{p}}=19.7 ; \mathrm{A} \sim 367.1$
e4) $\theta_{\mathrm{s}}=46.8+11.9=58.8 ; \theta_{\mathrm{p}}=78.9 ; \mathrm{A} \sim 4637.0$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 19

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=70 \Omega /(31.2-\mathrm{j} \cdot 59.0) \Omega=0.490+\mathrm{j} \cdot 0.927$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0249+\mathrm{j} \cdot 0.0350)] /(0.02+0.0249+\mathrm{j} \cdot 0.0350)$
$\Gamma=(-0.446)+\mathrm{j} \cdot(-0.432) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.621 \angle-135.9^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless ring coupler, matched at the input; Isolation $I=D+C=26.35 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=3.30 \mathrm{~mW}=5.185 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=5.185 \mathrm{dBm}-26.35 \mathrm{~dB}=-21.16 \mathrm{dBm}=7.647 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.585, \mathrm{y}_{1}=0.585, \mathrm{y}_{2}=0.811, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=85.4 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=61.7 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 74) \Omega=60.83 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=74 \Omega$ series with 0.73 nH inductor at $8.7 \mathrm{GHz}=74.00 \Omega+\mathrm{j} \cdot(39.90) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, Z_{\text {in }}=Z_{1}{ }^{2} / Z_{L}=Z_{0} \cdot R_{L} / Z_{L}=38.74 \Omega+j \cdot(-20.89) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>16.30 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=5.0+11.9=16.9 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.2+9.4=$ $17.6 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.2+11.9=20.1 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=9.4+11.9=21.3 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.66 \mathrm{~dB}=1.164, \mathrm{~F}_{2}=0.78 \mathrm{~dB}=1.197, \mathrm{~F}_{3}=1.02 \mathrm{~dB}=1.265, \mathrm{~F}_{4}=1.19 \mathrm{~dB}=1.315, \mathrm{G}_{1}=5.0 \mathrm{~dB}=3.162$, $\mathrm{G}_{2}=8.2 \mathrm{~dB}=6.607 ; \mathrm{F}(1,4)=1.164+(1.315-1) / 3.162=1.264=1.02 \mathrm{~dB} ; \mathrm{F}(2,3)=1.197+$ $(1.265-1) / 6.607=1.244=0.95 \mathrm{~dB}$;
$\mathrm{F}(1,4)>\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 2,3
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|\mathrm{S}_{11}\right|=0.620<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.114>1 ;|\Delta|=|(-0.096)+\mathrm{j} \cdot(0.264)|=0.281<1$ $\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=18.51=12.67 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.035 ; \mathrm{C}_{1}=(-0.506)+\mathrm{j} \cdot(0.059) ; \Gamma_{\mathrm{S}}=(-0.827)+\mathrm{j} \cdot(-0.097)=0.833 \angle-173.3^{\circ}$
$B_{2}=0.807 ; C_{2}=(-0.220)+\mathrm{j} \cdot(-0.325) ; \Gamma_{L}=(-0.443)+\mathrm{j} \cdot(0.654)=0.790 \angle 124.1^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=159.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-3.011 ; \theta_{\mathrm{p} 1}=108.4^{\circ}$ or $\theta_{\mathrm{S} 2}=13.5^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=3.011 ; \theta_{\mathrm{p} 2}=71.6^{\circ}$ output: $\theta_{\mathrm{L} 1}=9.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.574 ; \theta_{\mathrm{p} 1}=111.2^{\circ}$ or $\theta_{\mathrm{L} 2}=46.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.574 ; \theta_{\mathrm{p} 2}=68.8^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=9.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.574+(-3.011)=-5.585 ; \theta_{\mathrm{p} 1}=100.2^{\circ} ; \theta_{\mathrm{S} 1}=159.9^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=46.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.574+(-3.011)=-0.436 ; \theta_{\mathrm{p} 2}=156.4^{\circ} ; \theta_{\mathrm{S} 1}=159.9^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=9.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.574+(3.011)=0.436 ; \theta_{\mathrm{p} 3}=23.6^{\circ} ; \theta_{\mathrm{S} 2}=13.5^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=46.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.574+(3.011)=5.585 ; \theta_{\mathrm{p} 4}=79.8^{\circ} ; \theta_{\mathrm{S} 2}=13.5^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=9.0+159.9=168.9 ; \theta_{\mathrm{p}}=100.2 ; \mathrm{A} \sim 16915.2$
e2) $\theta_{\mathrm{s}}=46.9+159.9=206.7 ; \theta_{\mathrm{p}}=156.4 ; \mathrm{A} \sim 32339.5$
e3) $\theta_{\mathrm{s}}=9.0+13.5=22.5 ; \theta_{\mathrm{p}}=23.6 ; \mathrm{A} \sim 530.2$
e4) $\theta_{\mathrm{s}}=46.9+13.5=60.3 ; \theta_{\mathrm{p}}=79.8 ; \mathrm{A} \sim 4817.6$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 20

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=50 \Omega /(56.6+\mathrm{j} \cdot 36.8) \Omega=0.621-\mathrm{j} \cdot 0.404$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0105-\mathrm{j} \cdot 0.0151)] /(0.02+0.0105-\mathrm{j} \cdot 0.0151)$ $\Gamma=(0.053)+\mathrm{j} \cdot(0.521) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.524 \angle 84.2^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless coupled line coupler, matched at the input; Isolation $I=D+C=31.20 \mathrm{~dB}$ $\mathrm{P}_{\text {in }}=3.90 \mathrm{~mW}=5.911 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=5.911 \mathrm{dBm}-31.20 \mathrm{~dB}=-25.29 \mathrm{dBm}=2.958 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.468, \mathrm{Z}_{\mathrm{CE}}=83.03 \Omega, \mathrm{Z}_{\mathrm{CO}}=30.11 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 65) \Omega=57.01 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=65 \Omega$ series with 0.30 pF capacitor at $9.0 \mathrm{GHz}=65.00 \Omega+\mathrm{j} \cdot(-58.95) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=27.44 \Omega+\mathrm{j} \cdot(24.88) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>16.85 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.1+11.4=17.5 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=7.2+9.9=$ $17.1 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=7.2+11.4=18.6 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=9.9+11.4=21.3 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.57 \mathrm{~dB}=1.140, \mathrm{~F}_{2}=0.70 \mathrm{~dB}=1.175, \mathrm{~F}_{3}=0.94 \mathrm{~dB}=1.242, \mathrm{~F}_{4}=1.19 \mathrm{~dB}=1.315, \mathrm{G}_{1}=6.1 \mathrm{~dB}=4.074$, $\mathrm{G}_{2}=7.2 \mathrm{~dB}=5.248 ; \mathrm{F}(1,4)=1.140+(1.315-1) / 4.074=1.218=0.86 \mathrm{~dB} ; \mathrm{F}(2,3)=1.175+$ $(1.242-1) / 5.248=1.235=0.92 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|S_{11}\right|=0.639<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.193>1 ;|\Delta|=|(0.264)+\mathrm{j} \cdot(0.084)|=0.277<1$ $\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=10.26=10.11 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.366)+\mathrm{j} \cdot(0.348) ; \Gamma_{\mathrm{S}}=(-0.595)+\mathrm{j} \cdot(-0.566)=0.822 \angle-136.4^{\circ}$
$B_{2}=0.818 ; C_{2}=(-0.376)+\mathrm{j} \cdot(-0.125) ; \Gamma_{L}=(-0.740)+\mathrm{j} \cdot(0.245)=0.779 \angle 161.7^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=140.8^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-2.883 ; \theta_{\mathrm{p} 1}=109.1^{\circ}$ or $\theta_{\mathrm{S} 2}=175.6^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=2.883 ; \theta_{\mathrm{p} 2}=70.9^{\circ}$ output: $\theta_{\mathrm{L} 1}=169.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.488 ; \theta_{\mathrm{p} 1}=111.9^{\circ}$ or $\theta_{\mathrm{L} 2}=28.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.488 ; \theta_{\mathrm{p} 2}=68.1^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=169.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.488+(-2.883)=-5.372 ; \theta_{\mathrm{p} 1}=100.5^{\circ} ; \theta_{\mathrm{S} 1}=140.8^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=28.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.488+(-2.883)=-0.395 ; \theta_{\mathrm{p} 2}=158.5^{\circ} ; \theta_{\mathrm{S} 1}=140.8^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=169.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.488+(2.883)=0.395 ; \theta_{\mathrm{p} 3}=21.5^{\circ} ; \theta_{\mathrm{S} 2}=175.6^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=28.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.488+(2.883)=5.372 ; \theta_{\mathrm{p} 4}=79.5^{\circ} ; \theta_{\mathrm{S} 2}=175.6^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=169.8+140.8=310.6 ; \theta_{\mathrm{p}}=100.5 ; \mathrm{A} \sim 31230.5$
e2) $\theta_{\mathrm{s}}=28.6+140.8=169.4 ; \theta_{\mathrm{p}}=158.5 ; \mathrm{A} \sim 26842.5$
e3) $\theta_{\mathrm{s}}=169.8+175.6=345.4 ; \theta_{\mathrm{p}}=21.5 ; \mathrm{A} \sim 7440.4$
e4) $\theta_{\mathrm{s}}=28.6+175.6=204.1 ; \theta_{\mathrm{p}}=79.5 ; \mathrm{A} \sim 16220.5$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 21

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=80 \Omega /(43.6+\mathrm{j} \cdot 37.4) \Omega=1.057-\mathrm{j} \cdot 0.907$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0336+\mathrm{j} \cdot 0.0168)] /(0.02+0.0336+\mathrm{j} \cdot 0.0168)$
$\Gamma=(-0.320)+\mathrm{j} \cdot(-0.213) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.385 \angle-146.4^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless ring coupler, matched at the input; Isolation $\mathrm{I}=\mathrm{D}+\mathrm{C}=24.95 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=1.85 \mathrm{~mW}=2.672 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=2.672 \mathrm{dBm}-24.95 \mathrm{~dB}=-22.28 \mathrm{dBm}=5.918 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.613, \mathrm{y}_{1}=0.613, \mathrm{y}_{2}=0.790, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=81.6 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=63.3 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 54) \Omega=51.96 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=54 \Omega$ series with 0.37 pF capacitor at $6.6 \mathrm{GHz}=54.00 \Omega+\mathrm{j} \cdot(-65.17) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=20.35 \Omega+\mathrm{j} \cdot(24.56) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>16.05 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.1+11.7=17.8 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.5+9.4=$ $17.9 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.5+11.7=20.2 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=9.4+11.7=21.1 \mathrm{~dB} ;$
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.67 \mathrm{~dB}=1.167, \mathrm{~F}_{2}=0.76 \mathrm{~dB}=1.191, \mathrm{~F}_{3}=0.97 \mathrm{~dB}=1.250, \mathrm{~F}_{4}=1.20 \mathrm{~dB}=1.318, \mathrm{G}_{1}=6.1 \mathrm{~dB}=4.074$, $\mathrm{G}_{2}=8.5 \mathrm{~dB}=7.079 ; \mathrm{F}(1,4)=1.167+(1.318-1) / 4.074=1.245=0.95 \mathrm{~dB} ; \mathrm{F}(2,3)=1.191+$ $(1.250-1) / 7.079=1.236=0.92 \mathrm{~dB}$;
$\mathrm{F}(1,4)>\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 2,3
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable:
$\left|S_{11}\right|=0.644<1 ;\left|S_{22}\right|=0.520<1 ; K=1.101>1 ;|\Delta|=|(-0.126)+\mathrm{j} \cdot(0.250)|=0.280<1$
$\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=22.09=13.44 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.066 ; \mathrm{C}_{1}=(-0.525)+\mathrm{j} \cdot(-0.045) ; \Gamma_{\mathrm{S}}=(-0.853)+\mathrm{j} \cdot(0.073)=0.856 \angle 175.1^{\circ}$
$\mathrm{B}_{2}=0.777 ; \mathrm{C}_{2}=(-0.211)+\mathrm{j} \cdot(-0.316) ; \Gamma_{\mathrm{L}}=(-0.447)+\mathrm{j} \cdot(0.671)=0.807 \angle 123.7^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=166.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-3.311 ; \theta_{\mathrm{p} 1}=106.8^{\circ}$ or $\theta_{\mathrm{S} 2}=18.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{s}}\right)=3.311 ; \theta_{\mathrm{p} 2}=73.2^{\circ}$ output: $\theta_{\mathrm{L} 1}=10.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.730 ; \theta_{\mathrm{p} 1}=110.1^{\circ}$ or $\theta_{\mathrm{L} 2}=46.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.730 ; \theta_{\mathrm{p} 2}=69.9^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=10.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.730+(-3.311)=-6.042 ; \theta_{\mathrm{p} 1}=99.4^{\circ} ; \theta_{\mathrm{S} 1}=166.9^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=46.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.730+(-3.311)=-0.581 ; \theta_{\mathrm{p} 2}=149.8^{\circ} ; \theta_{\mathrm{S} 1}=166.9^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=10.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.730+(3.311)=0.581 ; \theta_{\mathrm{p} 3}=30.2^{\circ} ; \theta_{\mathrm{S} 2}=18.0^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=46.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.730+(3.311)=6.042 ; \theta_{\mathrm{p} 4}=80.6^{\circ} ; \theta_{\mathrm{S} 2}=18.0^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=10.0+166.9=176.9 ; \theta_{\mathrm{p}}=99.4 ; \mathrm{A} \sim 17586.7$
e2) $\theta_{\mathrm{s}}=46.3+166.9=213.2 ; \theta_{\mathrm{p}}=149.8 ; \mathrm{A} \sim 31937.7$
e3) $\theta_{\mathrm{s}}=10.0+18.0=28.1 ; \theta_{\mathrm{p}}=30.2 ; \mathrm{A} \sim 846.6$
e4) $\theta_{\mathrm{s}}=46.3+18.0=64.3 ; \theta_{\mathrm{p}}=80.6 ; \mathrm{A} \sim 5181.6$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 22

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=85 \Omega /(44.4-\mathrm{j} \cdot 56.6) \Omega=0.729+\mathrm{j} \cdot 0.930$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0184-\mathrm{j} \cdot 0.0361)] /(0.02+0.0184-\mathrm{j} \cdot 0.0361)$
$\Gamma=(-0.447)+\mathrm{j} \cdot(0.520) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.686 \angle 130.7^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless quadrature coupler, matched at the input; Isolation $I=21.50 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=4.05 \mathrm{~mW}=6.075 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=6.075 \mathrm{dBm}-21.50 \mathrm{~dB}=-15.43 \mathrm{dBm}=28.672 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.572, \mathrm{y}_{2}=1.219, \mathrm{y}_{1}=0.698, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=71.7 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=41.0 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 67) \Omega=57.88 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=67 \Omega$ series with 1.05 nH inductor at $7.5 \mathrm{GHz}=67.00 \Omega+\mathrm{j} \cdot(49.48) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, Z_{\text {in }}=Z_{1}{ }^{2} / Z_{L}=Z_{0} \cdot R_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=32.35 \Omega+\mathrm{j} \cdot(-23.89) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>14.55 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=5.1+11.6=16.7 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.7+9.4=$ $18.1 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.7+11.6=20.3 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=9.4+11.6=21.0 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.51 \mathrm{~dB}=1.125, \mathrm{~F}_{2}=0.80 \mathrm{~dB}=1.202, \mathrm{~F}_{3}=0.94 \mathrm{~dB}=1.242, \mathrm{~F}_{4}=1.21 \mathrm{~dB}=1.321, \mathrm{G}_{1}=5.1 \mathrm{~dB}=3.236$, $\mathrm{G}_{2}=8.7 \mathrm{~dB}=7.413 ; \mathrm{F}(1,4)=1.125+(1.321-1) / 3.236=1.224=0.88 \mathrm{~dB} ; \mathrm{F}(2,3)=1.202+$ $(1.242-1) / 7.413=1.246=0.95 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|S_{11}\right|=0.635<1 ;\left|S_{22}\right|=0.520<1 ; K=1.105>1 ;|\Delta|=|(-0.115)+\mathrm{j} \cdot(0.256)|=0.280<1$ $\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=20.69=13.16 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.054 ; \mathrm{C}_{1}=(-0.520)+\mathrm{j} \cdot(-0.005) ; \Gamma_{\mathrm{S}}=(-0.848)+\mathrm{j} \cdot(0.008)=0.848 \angle 179.4^{\circ}$
$B_{2}=0.789 ; C_{2}=(-0.214)+\mathrm{j} \cdot(-0.320) ; \Gamma_{L}=(-0.446)+\mathrm{j} \cdot(0.665)=0.801 \angle 123.9^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=164.3^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-3.202 ; \theta_{\mathrm{p} 1}=107.3^{\circ}$ or $\theta_{\mathrm{S} 2}=16.3^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=3.202 ; \theta_{\mathrm{p} 2}=72.7^{\circ}$ output: $\theta_{\mathrm{L} 1}=9.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.677 ; \theta_{\mathrm{p} 1}=110.5^{\circ}$ or $\theta_{\mathrm{L} 2}=46.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.677 ; \theta_{\mathrm{p} 2}=69.5^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=9.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.677+(-3.202)=-5.878 ; \theta_{\mathrm{p} 1}=99.7^{\circ} ; \theta_{\mathrm{S} 1}=164.3^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=46.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.677+(-3.202)=-0.525 ; \theta_{\mathrm{p} 2}=152.3^{\circ} ; \theta_{\mathrm{S} 1}=164.3^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=9.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.677+(3.202)=0.525 ; \theta_{\mathrm{p} 3}=27.7^{\circ} ; \theta_{\mathrm{S} 2}=16.3^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=46.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.677+(3.202)=5.878 ; \theta_{\mathrm{p} 4}=80.3^{\circ} ; \theta_{\mathrm{S} 2}=16.3^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=9.7+164.3=174.0 ; \theta_{\mathrm{p}}=99.7 ; \mathrm{A} \sim 17337.3$
e2) $\theta_{\mathrm{s}}=46.5+164.3=210.7 ; \theta_{\mathrm{p}}=152.3 ; \mathrm{A} \sim 32095.0$
e3) $\theta_{\mathrm{s}}=9.7+16.3=26.0 ; \theta_{\mathrm{p}}=27.7 ; \mathrm{A} \sim 719.4$
e4) $\theta_{\mathrm{s}}=46.5+16.3=62.7 ; \theta_{\mathrm{p}}=80.3 ; \mathrm{A} \sim 5040.3$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 23

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=40 \Omega /(30.7+\mathrm{j} \cdot 53.0) \Omega=0.327-\mathrm{j} \cdot 0.565$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0315-\mathrm{j} \cdot 0.0161)] /(0.02+0.0315-\mathrm{j} \cdot 0.0161)$
$\Gamma=(-0.292)+\mathrm{j} \cdot(0.221) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.367 \angle 142.9^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless coupled line coupler, matched at the input; Isolation $I=24.50 \mathrm{~dB}$ $\mathrm{P}_{\text {in }}=2.80 \mathrm{~mW}=4.472 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=4.472 \mathrm{dBm}-24.50 \mathrm{~dB}=-20.03 \mathrm{dBm}=9.935 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.631, \mathrm{Z}_{\mathrm{CE}}=105.11 \Omega, \mathrm{Z}_{\mathrm{CO}}=23.78 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 46) \Omega=47.96 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=46 \Omega$ series with 0.30 pF capacitor at $9.3 \mathrm{GHz}=46.00 \Omega+\mathrm{j} \cdot(-57.04) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot \mathrm{l}) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=19.70 \Omega+\mathrm{j} \cdot(24.43) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>15.10 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=5.6+10.3=15.9 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.5+9.1=$ $17.6 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.5+10.3=18.8 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=9.1+10.3=19.4 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.64 \mathrm{~dB}=1.159, \mathrm{~F}_{2}=0.82 \mathrm{~dB}=1.208, \mathrm{~F}_{3}=0.98 \mathrm{~dB}=1.253, \mathrm{~F}_{4}=1.19 \mathrm{~dB}=1.315, \mathrm{G}_{1}=5.6 \mathrm{~dB}=3.631$, $\mathrm{G}_{2}=8.5 \mathrm{~dB}=7.079 ; \mathrm{F}(1,4)=1.159+(1.315-1) / 3.631=1.246=0.95 \mathrm{~dB} ; \mathrm{F}(2,3)=1.208+$ $(1.253-1) / 7.079=1.252=0.98 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|S_{11}\right|=0.633<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.218>1 ;|\Delta|=|(0.262)+\mathrm{j} \cdot(0.015)|=0.263<1$ $\left.b_{\text {_ }} 1\right) \mathrm{G}_{\text {Tmax }}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=9.69=9.87 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.319)+\mathrm{j} \cdot(0.390) ; \Gamma_{\mathrm{S}}=(-0.516)+\mathrm{j} \cdot(-0.630)=0.814 \angle-129.3^{\circ}$
$\mathrm{B}_{2}=0.833 ; \mathrm{C}_{2}=(-0.391)+\mathrm{j} \cdot(-0.099) ; \Gamma_{\mathrm{L}}=(-0.750)+\mathrm{j} \cdot(0.190)=0.774 \angle 165.8^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=136.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-2.803 ; \theta_{\mathrm{p} 1}=109.6^{\circ}$ or $\theta_{\mathrm{S} 2}=172.4^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=2.803 ; \theta_{\mathrm{p} 2}=70.4^{\circ}$ output: $\theta_{\mathrm{L} 1}=167.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.445 ; \theta_{\mathrm{p} 1}=112.2^{\circ}$ or $\theta_{\mathrm{L} 2}=26.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.445 ; \theta_{\mathrm{p} 2}=67.8^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{LL} 1}=167.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.445+(-2.803)=-5.248 ; \theta_{\mathrm{p} 1}=100.8^{\circ} ; \theta_{\mathrm{S} 1}=136.9^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=26.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.445+(-2.803)=-0.358 ; \theta_{\mathrm{p} 2}=160.3^{\circ} ; \theta_{\mathrm{S} 1}=136.9^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=167.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.445+(2.803)=0.358 ; \theta_{\mathrm{p} 3}=19.7^{\circ} ; \theta_{\mathrm{S} 2}=172.4^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=26.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.445+(2.803)=5.248 ; \theta_{\mathrm{p} 4}=79.2^{\circ} ; \theta_{\mathrm{S} 2}=172.4^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=167.5+136.9=304.4 ; \theta_{\mathrm{p}}=100.8 ; \mathrm{A} \sim 30676.0$
e2) $\theta_{\mathrm{s}}=26.7+136.9=163.6 ; \theta_{\mathrm{p}}=160.3 ; \mathrm{A} \sim 26229.3$
e3) $\theta_{\mathrm{s}}=167.5+172.4=339.9 ; \theta_{\mathrm{p}}=19.7 ; \mathrm{A} \sim 6701.9$
e4) $\theta_{\mathrm{s}}=26.7+172.4=199.2 ; \theta_{\mathrm{p}}=79.2 ; \mathrm{A} \sim 15775.2$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 24

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=50 \Omega /(49.9+\mathrm{j} \cdot 60.2) \Omega=0.408-\mathrm{j} \cdot 0.492$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0327-\mathrm{j} \cdot 0.0257)] /(0.02+0.0327-\mathrm{j} \cdot 0.0257)$
$\Gamma=(-0.387)+\mathrm{j} \cdot(0.299) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.489 \angle 142.3^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless coupled line coupler, matched at the input; Isolation $I=21.00 \mathrm{~dB}$ $\mathrm{P}_{\text {in }}=2.70 \mathrm{~mW}=4.314 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=4.314 \mathrm{dBm}-21.00 \mathrm{~dB}=-16.69 \mathrm{dBm}=21.447 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.631, \mathrm{Z}_{\mathrm{CE}}=105.11 \Omega, \mathrm{Z}_{\mathrm{CO}}=23.78 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 70) \Omega=59.16 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=70 \Omega$ parallel with 1.39 nH inductor at $7.7 \mathrm{GHz}=33.60 \Omega+\mathrm{j} \cdot(34.97) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}{ }^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=50.00 \Omega+\mathrm{j} \cdot(-52.05) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain (1,$2 ; 1,3$).

Valid combinations ($\mathrm{G}>15.60 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.0+11.3=17.3 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.6+8.5=$ $17.1 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.6+11.3=19.9 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=8.5+11.3=19.8 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.54 \mathrm{~dB}=1.132, \mathrm{~F}_{2}=0.72 \mathrm{~dB}=1.180, \mathrm{~F}_{3}=0.94 \mathrm{~dB}=1.242, \mathrm{~F}_{4}=1.15 \mathrm{~dB}=1.303, \mathrm{G}_{1}=6.0 \mathrm{~dB}=3.981$, $\mathrm{G}_{2}=8.6 \mathrm{~dB}=7.244 ; \mathrm{F}(1,4)=1.132+(1.303-1) / 3.981=1.209=0.82 \mathrm{~dB} ; \mathrm{F}(2,3)=1.180+$ $(1.242-1) / 7.244=1.222=0.87 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable:
$\left|S_{11}\right|=0.600<1 ;\left|S_{22}\right|=0.560<1 ; K=1.192>1 ;|\Delta|=|(0.225)+\mathrm{j} \cdot(-0.088)|=0.242<1$
$\left.\mathrm{b}_{1} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=8.77=9.43 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=0.988 ; \mathrm{C}_{1}=(-0.187)+\mathrm{j} \cdot(0.445) ; \Gamma_{\mathrm{S}}=(-0.313)+\mathrm{j} \cdot(-0.743)=0.806 \angle-112.8^{\circ}$
$B_{2}=0.895 ; \mathrm{C}_{2}=(-0.434)+\mathrm{j} \cdot(-0.026) ; \Gamma_{\mathrm{L}}=(-0.787)+\mathrm{j} \cdot(0.047)=0.788 \angle 176.6^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=128.3^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-2.727 ; \theta_{\mathrm{p} 1}=110.1^{\circ}$ or $\theta_{\mathrm{S} 2}=164.5^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=2.727 ; \theta_{\mathrm{p} 2}=69.9^{\circ}$ output: $\theta_{\mathrm{L} 1}=162.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.560 ; \theta_{\mathrm{p} 1}=111.3^{\circ}$ or $\theta_{\mathrm{L} 2}=20.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.560 ; \theta_{\mathrm{p} 2}=68.7^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=162.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.560+(-2.727)=-5.287 ; \theta_{\mathrm{p} 1}=100.7^{\circ} ; \theta_{\mathrm{S} 1}=128.3^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=20.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.560+(-2.727)=-0.168 ; \theta_{\mathrm{p} 2}=170.5^{\circ} ; \theta_{\mathrm{S} 1}=128.3^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=162.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.560+(2.727)=0.168 ; \theta_{\mathrm{p} 3}=9.5^{\circ} ; \theta_{\mathrm{S} 2}=164.5^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=20.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.560+(2.727)=5.287 ; \theta_{\mathrm{p} 4}=79.3^{\circ} ; \theta_{\mathrm{S} 2}=164.5^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=162.7+128.3=291.0 ; \theta_{\mathrm{p}}=100.7 ; \mathrm{A} \sim 29306.1$
e2) $\theta_{\mathrm{s}}=20.7+128.3=149.0 ; \theta_{\mathrm{p}}=170.5 ; \mathrm{A} \sim 25400.9$
e3) $\theta_{\mathrm{s}}=162.7+164.5=327.2 ; \theta_{\mathrm{p}}=9.5 ; \mathrm{A} \sim 3114.9$
e4) $\theta_{\mathrm{s}}=20.7+164.5=185.2 ; \theta_{\mathrm{p}}=79.3 ; \mathrm{A} \sim 14688.2$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 25

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=30 \Omega /(35.4+\mathrm{j} \cdot 58.9) \Omega=0.225-\mathrm{j} \cdot 0.374$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0342+\mathrm{j} \cdot 0.0358)] /(0.02+0.0342+\mathrm{j} \cdot 0.0358)$
$\Gamma=(-0.486)+\mathrm{j} \cdot(-0.339) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.593 \angle-145.1^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless quadrature coupler, matched at the input; Isolation $\mathrm{I}=22.90 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=1.75 \mathrm{~mW}=2.430 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=2.430 \mathrm{dBm}-22.90 \mathrm{~dB}=-20.47 \mathrm{dBm}=8.975 \mu \mathrm{~W}$
b) L2, C12/2017, $\beta=10^{-\mathrm{C} / 20}=0.490, \mathrm{y}_{2}=1.147, \mathrm{y}_{1}=0.562, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=89.0 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=43.6 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 28) \Omega=37.42 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=28 \Omega$ series with 1.44 nH inductor at $7.5 \mathrm{GHz}=28.00 \Omega+\mathrm{j} \cdot(67.86) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, Z_{\text {in }}=Z_{1}^{2} / Z_{L}=Z_{0} \cdot R_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=7.27 \Omega+\mathrm{j} \cdot(-17.63) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>14.65 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=5.1+11.9=17.0 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.2+8.6=$ $16.8 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.2+11.9=20.1 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=8.6+11.9=20.5 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.64 \mathrm{~dB}=1.159, \mathrm{~F}_{2}=0.81 \mathrm{~dB}=1.205, \mathrm{~F}_{3}=0.98 \mathrm{~dB}=1.253, \mathrm{~F}_{4}=1.25 \mathrm{~dB}=1.334, \mathrm{G}_{1}=5.1 \mathrm{~dB}=3.236$, $\mathrm{G}_{2}=8.2 \mathrm{~dB}=6.607 ; \mathrm{F}(1,4)=1.159+(1.334-1) / 3.236=1.262=1.01 \mathrm{~dB} ; \mathrm{F}(2,3)=1.205+$ $(1.253-1) / 6.607=1.256=0.99 \mathrm{~dB}$;
$\mathrm{F}(1,4)>\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 2,3
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|\mathrm{S}_{11}\right|=0.623<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.112>1 ;|\Delta|=|(-0.100)+\mathrm{j} \cdot(0.262)|=0.281<1$ $\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=18.93=12.77 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.039 ; \mathrm{C}_{1}=(-0.509)+\mathrm{j} \cdot(0.047) ; \Gamma_{\mathrm{S}}=(-0.833)+\mathrm{j} \cdot(-0.076)=0.836 \angle-174.8^{\circ}$
$B_{2}=0.804 ; \mathrm{C}_{2}=(-0.219)+\mathrm{j} \cdot(-0.324) ; \Gamma_{\mathrm{L}}=(-0.443)+\mathrm{j} \cdot(0.656)=0.792 \angle 124.0^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=160.8^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-3.049 ; \theta_{\mathrm{p} 1}=108.2^{\circ}$ or $\theta_{\mathrm{S} 2}=14.0^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=3.049 ; \theta_{\mathrm{p} 2}=71.8^{\circ}$ output: $\theta_{\mathrm{L} 1}=9.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.596 ; \theta_{\mathrm{p} 1}=111.1^{\circ}$ or $\theta_{\mathrm{L} 2}=46.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.596 ; \theta_{\mathrm{p} 2}=68.9^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=9.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.596+(-3.049)=-5.645 ; \theta_{\mathrm{p} 1}=100.0^{\circ} ; \theta_{\mathrm{S} 1}=160.8^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=46.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.596+(-3.049)=-0.454 ; \theta_{\mathrm{p} 2}=155.6^{\circ} ; \theta_{\mathrm{S} 1}=160.8^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=9.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.596+(3.049)=0.454 ; \theta_{\mathrm{p} 3}=24.4^{\circ} ; \theta_{\mathrm{S} 2}=14.0^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=46.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.596+(3.049)=5.645 ; \theta_{\mathrm{p} 4}=80.0^{\circ} ; \theta_{\mathrm{S} 2}=14.0^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=9.2+160.8=169.9 ; \theta_{\mathrm{p}}=100.0 ; \mathrm{A} \sim 17000.2$
e2) $\theta_{\mathrm{s}}=46.8+160.8=207.5 ; \theta_{\mathrm{p}}=155.6 ; \mathrm{A} \sim 32293.4$
e3) $\theta_{\mathrm{s}}=9.2+14.0=23.2 ; \theta_{\mathrm{p}}=24.4 ; \mathrm{A} \sim 565.6$
e4) $\theta_{\mathrm{s}}=46.8+14.0=60.8 ; \theta_{\mathrm{p}}=80.0 ; \mathrm{A} \sim 4861.0$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 26

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=85 \Omega /(33.8-\mathrm{j} \cdot 69.6) \Omega=0.480+\mathrm{j} \cdot 0.988$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0352-\mathrm{j} \cdot 0.0178)] /(0.02+0.0352-\mathrm{j} \cdot 0.0178)$
$\Gamma=(-0.344)+\mathrm{j} \cdot(0.212) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.404 \angle 148.4^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless ring coupler, matched at the input; Isolation $I=20.70 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=3.80 \mathrm{~mW}=5.798 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=5.798 \mathrm{dBm}-20.70 \mathrm{~dB}=-14.90 \mathrm{dBm}=32.343 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.465, \mathrm{y}_{1}=0.465, \mathrm{y}_{2}=0.885, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=107.5 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=56.5 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 27) \Omega=36.74 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=27 \Omega$ parallel with 0.43 pF capacitor at $9.3 \mathrm{GHz}=18.49 \Omega+\mathrm{j} \cdot(-12.54) \Omega$ $\theta=\pi / 4, \tan (\beta \cdot \mathrm{l}) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}{ }^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=50.00 \Omega+\mathrm{j} \cdot(33.92) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations $(G>15.95 \mathrm{~dB}): \mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.7+11.6=18.3 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.1+8.9=$ $17.0 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.1+11.6=19.7 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=8.9+11.6=20.5 \mathrm{~dB}$;
b) Friis Formula ($\mathrm{C} 9 / 2017, \mathrm{~S} 92$), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.62 \mathrm{~dB}=1.153, \mathrm{~F}_{2}=0.83 \mathrm{~dB}=1.211, \mathrm{~F}_{3}=1.03 \mathrm{~dB}=1.268, \mathrm{~F}_{4}=1.23 \mathrm{~dB}=1.327, \mathrm{G}_{1}=6.7 \mathrm{~dB}=4.677$, $\mathrm{G}_{2}=8.1 \mathrm{~dB}=6.457 ; \mathrm{F}(1,4)=1.153+(1.327-1) / 4.677=1.223=0.88 \mathrm{~dB} ; \mathrm{F}(2,3)=1.211+$ $(1.268-1) / 6.457=1.261=1.01 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|S_{11}\right|=0.614<1 ;\left|S_{22}\right|=0.520<1 ; \mathrm{K}=1.136>1 ;|\Delta|=|(-0.072)+\mathrm{j} \cdot(0.264)|=0.274<1$ b_1) $\mathrm{G}_{T \max }=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=17.58=12.45 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.031 ; \mathrm{C}_{1}=(-0.499)+\mathrm{j} \cdot(0.084) ; \Gamma_{\mathrm{S}}=(-0.808)+\mathrm{j} \cdot(-0.136)=0.819 \angle-170.5^{\circ}$
$\mathrm{B}_{2}=0.818 ; \mathrm{C}_{2}=(-0.229)+\mathrm{j} \cdot(-0.324) ; \Gamma_{\mathrm{L}}=(-0.448)+\mathrm{j} \cdot(0.634)=0.777 \angle 125.2^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=157.7^{\circ} ; \operatorname{Im}\left(y_{\mathrm{S}}\right)=-2.860 ; \theta_{\mathrm{p} 1}=109.3^{\circ}$ or $\theta_{\mathrm{S} 2}=12.7^{\circ} ; \operatorname{Im}\left(y_{\mathrm{S}}\right)=2.860 ; \theta_{\mathrm{p} 2}=70.7^{\circ}$ output: $\theta_{\mathrm{L} 1}=7.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.465 ; \theta_{\mathrm{p} 1}=112.1^{\circ}$ or $\theta_{\mathrm{L} 2}=46.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.465 ; \theta_{\mathrm{p} 2}=67.9^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=7.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.465+(-2.860)=-5.324 ; \theta_{\mathrm{p} 1}=100.6^{\circ} ; \theta_{\mathrm{S} 1}=157.7^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=46.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.465+(-2.860)=-0.395 ; \theta_{\mathrm{p} 2}=158.4^{\circ} ; \theta_{\mathrm{S} 1}=157.7^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=7.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.465+(2.860)=0.395 ; \theta_{\mathrm{p} 3}=21.6^{\circ} ; \theta_{\mathrm{S} 2}=12.7^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=46.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.465+(2.860)=5.324 ; \theta_{\mathrm{p} 4}=79.4^{\circ} ; \theta_{\mathrm{S} 2}=12.7^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=7.8+157.7=165.6 ; \theta_{\mathrm{p}}=100.6 ; \mathrm{A} \sim 16665.1$
e2) $\theta_{\mathrm{s}}=46.9+157.7=204.7 ; \theta_{\mathrm{p}}=158.4 ; \mathrm{A} \sim 32425.6$
e3) $\theta_{\mathrm{s}}=7.8+12.7=20.6 ; \theta_{\mathrm{p}}=21.6 ; \mathrm{A} \sim 443.3$
e4) $\theta_{\mathrm{s}}=46.9+12.7=59.6 ; \theta_{\mathrm{p}}=79.4 ; \mathrm{A} \sim 4731.7$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 27

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=70 \Omega /(31.4+\mathrm{j} \cdot 55.9) \Omega=0.535-\mathrm{j} \cdot 0.952$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0289+\mathrm{j} \cdot 0.0158)] /(0.02+0.0289+\mathrm{j} \cdot 0.0158)$
$\Gamma=(-0.259)+\mathrm{j} \cdot(-0.239) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.353 \angle-137.3^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless ring coupler, matched at the input; Isolation $\mathrm{I}=\mathrm{D}+\mathrm{C}=25.85 \mathrm{~dB}$ $\mathrm{P}_{\text {in }}=4.00 \mathrm{~mW}=6.021 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=6.021 \mathrm{dBm}-25.85 \mathrm{~dB}=-19.83 \mathrm{dBm}=10.401 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.516, \mathrm{y}_{1}=0.516, \mathrm{y}_{2}=0.857, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=96.9 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=58.4 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 57) \Omega=53.39 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=57 \Omega$ parallel with 0.79 pF capacitor at $6.6 \mathrm{GHz}=12.70 \Omega+\mathrm{j} \cdot(-23.72) \Omega$ $\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=50.00 \Omega+\mathrm{j} \cdot(93.37) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>15.15 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=5.2+11.6=16.8 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=7.1+8.8=$ $15.9 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=7.1+11.6=18.7 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=8.8+11.6=20.4 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.53 \mathrm{~dB}=1.130, \mathrm{~F}_{2}=0.88 \mathrm{~dB}=1.225, \mathrm{~F}_{3}=1.00 \mathrm{~dB}=1.259, \mathrm{~F}_{4}=1.27 \mathrm{~dB}=1.340, \mathrm{G}_{1}=5.2 \mathrm{~dB}=3.311$, $\mathrm{G}_{2}=7.1 \mathrm{~dB}=5.129 ; \mathrm{F}(1,4)=1.130+(1.340-1) / 3.311=1.232=0.91 \mathrm{~dB} ; \mathrm{F}(2,3)=1.225+$ $(1.259-1) / 5.129=1.291=1.11 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|\mathrm{S}_{11}\right|=0.632<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.106>1 ;|\Delta|=|(-0.111)+\mathrm{j} \cdot(0.257)|=0.280<1$ $\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=20.24=13.06 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.051 ; \mathrm{C}_{1}=(-0.518)+\mathrm{j} \cdot(0.008) ; \Gamma_{\mathrm{S}}=(-0.845)+\mathrm{j} \cdot(-0.013)=0.845 \angle-179.1^{\circ}$
$B_{2}=0.792 ; C_{2}=(-0.216)+\mathrm{j} \cdot(-0.321) ; \Gamma_{L}=(-0.446)+\mathrm{j} \cdot(0.663)=0.799 \angle 123.9^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=163.4^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-3.164 ; \theta_{\mathrm{p} 1}=107.5^{\circ}$ or $\theta_{\mathrm{S} 2}=15.7^{\circ} ; \operatorname{Im}(\mathrm{ys})=3.164 ; \theta_{\mathrm{p} 2}=72.5^{\circ}$ output: $\theta_{\mathrm{L} 1}=9.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.657 ; \theta_{\mathrm{p} 1}=110.6^{\circ}$ or $\theta_{\mathrm{L} 2}=46.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.657 ; \theta_{\mathrm{p} 2}=69.4^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=9.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.657+(-3.164)=-5.821 ; \theta_{\mathrm{p} 1}=99.7^{\circ} ; \theta_{\mathrm{S} 1}=163.4^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=46.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.657+(-3.164)=-0.507 ; \theta_{\mathrm{p} 2}=153.1^{\circ} ; \theta_{\mathrm{S} 1}=163.4^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=9.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.657+(3.164)=0.507 ; \theta_{\mathrm{p} 3}=26.9^{\circ} ; \theta_{\mathrm{S} 2}=15.7^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=46.5^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.657+(3.164)=5.821 ; \theta_{\mathrm{p} 4}=80.3^{\circ} ; \theta_{\mathrm{S} 2}=15.7^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=9.6+163.4=173.0 ; \theta_{\mathrm{p}}=99.7 ; \mathrm{A} \sim 17253.5$
e2) $\theta_{\mathrm{s}}=46.5+163.4=209.9 ; \theta_{\mathrm{p}}=153.1 ; \mathrm{A} \sim 32146.3$
e3) $\theta_{\mathrm{s}}=9.6+15.7=25.3 ; \theta_{\mathrm{p}}=26.9 ; \mathrm{A} \sim 679.2$
e4) $\theta_{\mathrm{s}}=46.5+15.7=62.2 ; \theta_{\mathrm{p}}=80.3 ; \mathrm{A} \sim 4994.5$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 28

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=70 \Omega /(31.9-\mathrm{j} \cdot 49.7) \Omega=0.640+\mathrm{j} \cdot 0.998$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0260+\mathrm{j} \cdot 0.0291)] /(0.02+0.0260+\mathrm{j} \cdot 0.0291)$
$\Gamma=(-0.379)+\mathrm{j} \cdot(-0.393) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.546 \angle-134.0^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless ring coupler, matched at the input; Isolation $I=D+C=27.95 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=3.25 \mathrm{~mW}=5.119 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=5.119 \mathrm{dBm}-27.95 \mathrm{~dB}=-22.83 \mathrm{dBm}=5.211 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.606, \mathrm{y}_{1}=0.606, \mathrm{y}_{2}=0.795, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=82.5 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=62.9 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 51) \Omega=50.50 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=51 \Omega$ parallel with 1.11 nH inductor at $7.4 \mathrm{GHz}=25.80 \Omega+\mathrm{j} \cdot(25.50) \Omega$ $\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, Z_{\text {in }}=Z_{1}{ }^{2} / Z_{L}=Z_{0} \cdot R_{L} / Z_{L}=50.00 \Omega+\mathrm{j} \cdot(-49.41) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain (1,$2 ; 1,3$).

Valid combinations ($\mathrm{G}>14.50 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=5.8+10.3=16.1 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=7.7+8.6=$ $16.3 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=7.7+10.3=18.0 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=8.6+10.3=18.9 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.66 \mathrm{~dB}=1.164, \mathrm{~F}_{2}=0.87 \mathrm{~dB}=1.222, \mathrm{~F}_{3}=1.05 \mathrm{~dB}=1.274, \mathrm{~F}_{4}=1.23 \mathrm{~dB}=1.327, \mathrm{G}_{1}=5.8 \mathrm{~dB}=3.802$, $\mathrm{G}_{2}=7.7 \mathrm{~dB}=5.888 ; \mathrm{F}(1,4)=1.164+(1.327-1) / 3.802=1.250=0.97 \mathrm{~dB} ; \mathrm{F}(2,3)=1.222+$ $(1.274-1) / 5.888=1.277=1.06 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|\mathrm{S}_{11}\right|=0.632<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.223>1 ;|\Delta|=|(0.261)+\mathrm{j} \cdot(0.003)|=0.261<1$ $\left.\mathrm{b}_{-1}\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=9.59=9.82 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.311)+\mathrm{j} \cdot(0.396) ; \Gamma_{\mathrm{S}}=(-0.502)+\mathrm{j} \cdot(-0.639)=0.813 \angle-128.1^{\circ}$
$\mathrm{B}_{2}=0.835 ; \mathrm{C}_{2}=(-0.393)+\mathrm{j} \cdot(-0.094) ; \Gamma_{\mathrm{L}}=(-0.752)+\mathrm{j} \cdot(0.181)=0.773 \angle 166.5^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=136.2^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-2.789 ; \theta_{\mathrm{p} 1}=109.7^{\circ}$ or $\theta_{\mathrm{S} 2}=171.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=2.789 ; \theta_{\mathrm{p} 2}=70.3^{\circ}$ output: $\theta_{\mathrm{L} 1}=167.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.436 ; \theta_{\mathrm{p} 1}=112.3^{\circ}$ or $\theta_{\mathrm{L} 2}=26.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.436 ; \theta_{\mathrm{p} 2}=67.7^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=167.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.436+(-2.789)=-5.225 ; \theta_{\mathrm{p} 1}=100.8^{\circ} ; \theta_{\mathrm{S} 1}=136.2^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=26.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.436+(-2.789)=-0.352 ; \theta_{\mathrm{p} 2}=160.6^{\circ} ; \theta_{\mathrm{S} 1}=136.2^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=167.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.436+(2.789)=0.352 ; \theta_{\mathrm{p} 3}=19.4^{\circ} ; \theta_{\mathrm{S} 2}=171.9^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=26.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.436+(2.789)=5.225 ; \theta_{\mathrm{p} 4}=79.2^{\circ} ; \theta_{\mathrm{S} 2}=171.9^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=167.1+136.2=303.3 ; \theta_{\mathrm{p}}=100.8 ; \mathrm{A} \sim 30583.6$
e2) $\theta_{\mathrm{s}}=26.4+136.2=162.7 ; \theta_{\mathrm{p}}=160.6 ; \mathrm{A} \sim 26124.9$
e3) $\theta_{\mathrm{s}}=167.1+171.9=339.0 ; \theta_{\mathrm{p}}=19.4 ; \mathrm{A} \sim 6581.3$
e4) $\theta_{\mathrm{s}}=26.4+171.9=198.3 ; \theta_{\mathrm{p}}=79.2 ; \mathrm{A} \sim 15701.2$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 29

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=60 \Omega /(49.2-\mathrm{j} \cdot 38.3) \Omega=0.759+\mathrm{j} \cdot 0.591$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0305+\mathrm{j} \cdot 0.0172)] /(0.02+0.0305+\mathrm{j} \cdot 0.0172)$
$\Gamma=(-0.290)+\mathrm{j} \cdot(-0.242) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.378 \angle-140.2^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless ring coupler, matched at the input; Isolation $I=D+C=27.85 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=1.15 \mathrm{~mW}=0.607 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=0.607 \mathrm{dBm}-27.85 \mathrm{~dB}=-27.24 \mathrm{dBm}=1.887 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.516, \mathrm{y}_{1}=0.516, \mathrm{y}_{2}=0.857, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=96.9 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=58.4 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 53) \Omega=51.48 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=53 \Omega$ parallel with 0.40 pF capacitor at $8.0 \mathrm{GHz}=24.82 \Omega+\mathrm{j} \cdot(-26.45) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=50.00 \Omega+\mathrm{j} \cdot(53.28) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>14.45 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=5.2+11.2=16.4 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.2+8.3=$ $16.5 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.2+11.2=19.4 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=8.3+11.2=19.5 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.57 \mathrm{~dB}=1.140, \mathrm{~F}_{2}=0.73 \mathrm{~dB}=1.183, \mathrm{~F}_{3}=1.08 \mathrm{~dB}=1.282, \mathrm{~F}_{4}=1.15 \mathrm{~dB}=1.303, \mathrm{G}_{1}=5.2 \mathrm{~dB}=3.311$, $\mathrm{G}_{2}=8.2 \mathrm{~dB}=6.607 ; \mathrm{F}(1,4)=1.140+(1.303-1) / 3.311=1.232=0.91 \mathrm{~dB} ; \mathrm{F}(2,3)=1.183+$ $(1.282-1) / 6.607=1.229=0.90 \mathrm{~dB}$;
$\mathrm{F}(1,4)>\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 2,3
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|S_{11}\right|=0.640<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.189>1 ;|\Delta|=|(0.262)+\mathrm{j} \cdot(0.095)|=0.279<1$ $\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=10.36=10.15 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.373)+\mathrm{j} \cdot(0.340) ; \Gamma_{\mathrm{S}}=(-0.608)+\mathrm{j} \cdot(-0.555)=0.823 \angle-137.6^{\circ}$
$B_{2}=0.815 ; \mathrm{C}_{2}=(-0.374)+\mathrm{j} \cdot(-0.129) ; \Gamma_{\mathrm{L}}=(-0.738)+\mathrm{j} \cdot(0.254)=0.780 \angle 161.0^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=141.5^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-2.897 ; \theta_{\mathrm{p} 1}=109.0^{\circ}$ or $\theta_{\mathrm{s} 2}=176.1^{\circ} ; \operatorname{Im}\left(\mathrm{ys}^{\prime}\right)=2.897 ; \theta_{\mathrm{p} 2}=71.0^{\circ}$ output: $\theta_{\mathrm{L} 1}=170.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.496 ; \theta_{\mathrm{p} 1}=111.8^{\circ}$ or $\theta_{\mathrm{L} 2}=28.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.496 ; \theta_{\mathrm{p} 2}=68.2^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=170.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.496+(-2.897)=-5.393 ; \theta_{\mathrm{p} 1}=100.5^{\circ} ; \theta_{\mathrm{S} 1}=141.5^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=28.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.496+(-2.897)=-0.401 ; \theta_{\mathrm{p} 2}=158.1^{\circ} ; \theta_{\mathrm{S} 1}=141.5^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=170.1^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.496+(2.897)=0.401 ; \theta_{\mathrm{p} 3}=21.9^{\circ} ; \theta_{\mathrm{S} 2}=176.1^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=28.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.496+(2.897)=5.393 ; \theta_{\mathrm{p} 4}=79.5^{\circ} ; \theta_{\mathrm{S} 2}=176.1^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=170.1+141.5=311.7 ; \theta_{\mathrm{p}}=100.5 ; \mathrm{A} \sim 31322.5$
e2) $\theta_{\mathrm{s}}=28.9+141.5=170.4 ; \theta_{\mathrm{p}}=158.1 ; \mathrm{A} \sim 26941.0$
e3) $\theta_{\mathrm{s}}=170.1+176.1=346.3 ; \theta_{\mathrm{p}}=21.9 ; \mathrm{A} \sim 7568.0$
e4) $\theta_{\mathrm{s}}=28.9+176.1=205.0 ; \theta_{\mathrm{p}}=79.5 ; \mathrm{A} \sim 16294.6$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 30

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=85 \Omega /(35.7+\mathrm{j} \cdot 66.3) \Omega=0.535-\mathrm{j} \cdot 0.994$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0133-\mathrm{j} \cdot 0.0223)] /(0.02+0.0133-\mathrm{j} \cdot 0.0223)$
$\Gamma=(-0.171)+\mathrm{j} \cdot(0.555) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.581 \angle 107.1^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless coupled line coupler, matched at the input; Isolation $I=21.50 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=1.80 \mathrm{~mW}=2.553 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=2.553 \mathrm{dBm}-21.50 \mathrm{~dB}=-18.95 \mathrm{dBm}=12.743 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.617, \mathrm{Z}_{\mathrm{CE}}=102.67 \Omega, \mathrm{Z}_{\mathrm{CO}}=24.35 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 46) \Omega=47.96 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=46 \Omega$ series with 0.32 pF capacitor at $7.3 \mathrm{GHz}=46.00 \Omega+\mathrm{j} \cdot(-68.13) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot \mathrm{l}) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=15.66 \Omega+\mathrm{j} \cdot(23.19) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>15.80 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=5.5+11.9=17.4 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=7.5+9.8=$ $17.3 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=7.5+11.9=19.4 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=9.8+11.9=21.7 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.64 \mathrm{~dB}=1.159, \mathrm{~F}_{2}=0.84 \mathrm{~dB}=1.213, \mathrm{~F}_{3}=0.95 \mathrm{~dB}=1.245, \mathrm{~F}_{4}=1.25 \mathrm{~dB}=1.334, \mathrm{G}_{1}=5.5 \mathrm{~dB}=3.548$, $\mathrm{G}_{2}=7.5 \mathrm{~dB}=5.623 ; \mathrm{F}(1,4)=1.159+(1.334-1) / 3.548=1.253=0.98 \mathrm{~dB} ; \mathrm{F}(2,3)=1.213+$ $(1.245-1) / 5.623=1.273=1.05 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|\mathrm{S}_{11}\right|=0.626<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.110>1 ;|\Delta|=|(-0.103)+\mathrm{j} \cdot(0.261)|=0.280<1$ $\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=19.36=12.87 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.043 ; \mathrm{C}_{1}=(-0.512)+\mathrm{j} \cdot(0.034) ; \Gamma_{\mathrm{S}}=(-0.837)+\mathrm{j} \cdot(-0.055)=0.839 \angle-176.2^{\circ}$
$\mathrm{B}_{2}=0.800 ; \mathrm{C}_{2}=(-0.218)+\mathrm{j} \cdot(-0.323) ; \Gamma_{\mathrm{L}}=(-0.444)+\mathrm{j} \cdot(0.659)=0.795 \angle 124.0^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=161.6^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-3.088 ; \theta_{\mathrm{p} 1}=107.9^{\circ}$ or $\theta_{\mathrm{S} 2}=14.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=3.088 ; \theta_{\mathrm{p} 2}=72.1^{\circ}$ output: $\theta_{\mathrm{L} 1}=9.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.617 ; \theta_{\mathrm{p} 1}=110.9^{\circ}$ or $\theta_{\mathrm{L} 2}=46.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.617 ; \theta_{\mathrm{p} 2}=69.1^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=9.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.617+(-3.088)=-5.705 ; \theta_{\mathrm{p} 1}=99.9^{\circ} ; \theta_{\mathrm{S} 1}=161.6^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=46.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.617+(-3.088)=-0.471 ; \theta_{\mathrm{p} 2}=154.8^{\circ} ; \theta_{\mathrm{S} 1}=161.6^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=9.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.617+(3.088)=0.471 ; \theta_{\mathrm{p} 3}=25.2^{\circ} ; \theta_{\mathrm{S} 2}=14.6^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=46.7^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.617+(3.088)=5.705 ; \theta_{\mathrm{p} 4}=80.1^{\circ} ; \theta_{\mathrm{S} 2}=14.6^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=9.3+161.6=170.9 ; \theta_{\mathrm{p}}=99.9 ; \mathrm{A} \sim 17084.9$
e2) $\theta_{\mathrm{s}}=46.7+161.6=208.3 ; \theta_{\mathrm{p}}=154.8 ; \mathrm{A} \sim 32245.7$
e3) $\theta_{\mathrm{s}}=9.3+14.6=23.9 ; \theta_{\mathrm{p}}=25.2 ; \mathrm{A} \sim 602.3$
e4) $\theta_{\mathrm{s}}=46.7+14.6=61.3 ; \theta_{\mathrm{p}}=80.1 ; \mathrm{A} \sim 4905.0$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 31

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=100 \Omega /(51.9+\mathrm{j} \cdot 67.1) \Omega=0.721-\mathrm{j} \cdot 0.932$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0114-\mathrm{j} \cdot 0.0232)] /(0.02+0.0114-\mathrm{j} \cdot 0.0232)$
$\Gamma=(-0.176)+\mathrm{j} \cdot(0.609) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.634 \angle 106.1^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless quadrature coupler, matched at the input; Isolation $I=D+C=30.70 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=3.40 \mathrm{~mW}=5.315 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=5.315 \mathrm{dBm}-30.70 \mathrm{~dB}=-25.39 \mathrm{dBm}=2.894 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.484, \mathrm{y}_{2}=1.143, \mathrm{y}_{1}=0.553, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=90.4 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=43.7 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 41) \Omega=45.28 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=41 \Omega$ series with 0.74 nH inductor at $9.5 \mathrm{GHz}=41.00 \Omega+\mathrm{j} \cdot(44.17) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, Z_{\text {in }}=Z_{1}^{2} / Z_{L}=Z_{0} \cdot R_{L} / Z_{L}=23.14 \Omega+j \cdot(-24.93) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations $(G>16.70 \mathrm{~dB}): \mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.8+11.8=18.6 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=7.4+9.8=$ $17.2 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=7.4+11.8=19.2 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=9.8+11.8=21.6 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S 92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.63 \mathrm{~dB}=1.156, \mathrm{~F}_{2}=0.88 \mathrm{~dB}=1.225, \mathrm{~F}_{3}=0.99 \mathrm{~dB}=1.256, \mathrm{~F}_{4}=1.26 \mathrm{~dB}=1.337, \mathrm{G}_{1}=6.8 \mathrm{~dB}=4.786$, $\mathrm{G}_{2}=7.4 \mathrm{~dB}=5.495 ; \mathrm{F}(1,4)=1.156+(1.337-1) / 4.786=1.226=0.89 \mathrm{~dB} ; \mathrm{F}(2,3)=1.225+$ $(1.256-1) / 5.495=1.286=1.09 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|S_{11}\right|=0.640<1 ;\left|S_{22}\right|=0.550<1 ; K=1.182>1 ;|\Delta|=|(0.246)+\mathrm{j} \cdot(0.141)|=0.284<1$ b_1) $\mathrm{G}_{T \max }=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=10.62=10.26 \mathrm{~dB}$
b_2) Complex calculus from $\mathrm{C} 8 / 2017$, S106:
$\mathrm{B}_{1}=1.026 ; \mathrm{C}_{1}=(-0.400)+\mathrm{j} \cdot(0.307) ; \Gamma_{\mathrm{S}}=(-0.653)+\mathrm{j} \cdot(-0.502)=0.824 \angle-142.5^{\circ}$
$\mathrm{B}_{2}=0.812 ; \mathrm{C}_{2}=(-0.364)+\mathrm{j} \cdot(-0.151) ; \Gamma_{\mathrm{L}}=(-0.722)+\mathrm{j} \cdot(0.299)=0.781 \angle 157.5^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=144.0^{\circ} ; \operatorname{Im}\left(y_{S}\right)=-2.906 ; \theta_{\mathrm{p} 1}=109.0^{\circ}$ or $\theta_{\mathrm{S} 2}=178.5^{\circ} ; \operatorname{Im}\left(y_{\mathrm{S}}\right)=2.906 ; \theta_{\mathrm{p} 2}=71.0^{\circ}$ output: $\theta_{\mathrm{L} 1}=171.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.503 ; \theta_{\mathrm{p} 1}=111.8^{\circ}$ or $\theta_{\mathrm{L} 2}=30.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.503 ; \theta_{\mathrm{p} 2}=68.2^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=171.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.503+(-2.906)=-5.409 ; \theta_{\mathrm{p} 1}=100.5^{\circ} ; \theta_{\mathrm{S} 1}=144.0^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=30.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.503+(-2.906)=-0.403 ; \theta_{\mathrm{p} 2}=158.1^{\circ} ; \theta_{\mathrm{S} 1}=144.0^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=171.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.503+(2.906)=0.403 ; \theta_{\mathrm{p} 3}=21.9^{\circ} ; \theta_{\mathrm{S} 2}=178.5^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=30.6^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.503+(2.906)=5.409 ; \theta_{\mathrm{p} 4}=79.5^{\circ} ; \theta_{\mathrm{S} 2}=178.5^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=171.9+144.0=315.9 ; \theta_{\mathrm{p}}=100.5 ; \mathrm{A} \sim 31740.9$
e2) $\theta_{\mathrm{s}}=30.6+144.0=174.5 ; \theta_{\mathrm{p}}=158.1 ; \mathrm{A} \sim 27585.9$
e3) $\theta_{\mathrm{s}}=171.9+178.5=350.4 ; \theta_{\mathrm{p}}=21.9 ; \mathrm{A} \sim 7691.5$
e4) $\theta_{\mathrm{s}}=30.6+178.5=209.1 ; \theta_{\mathrm{p}}=79.5 ; \mathrm{A} \sim 16626.7$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 32

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=60 \Omega /(62.2-\mathrm{j} \cdot 58.7) \Omega=0.510+\mathrm{j} \cdot 0.482$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0299+\mathrm{j} \cdot 0.0282)] /(0.02+0.0299+\mathrm{j} \cdot 0.0282)$
$\Gamma=(-0.392)+\mathrm{j} \cdot(-0.343) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.521 \angle-138.8^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless coupled line coupler, matched at the input; Isolation $I=D+C=29.00 \mathrm{~dB}$ $\mathrm{P}_{\text {in }}=1.95 \mathrm{~mW}=2.900 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=2.900 \mathrm{dBm}-29.00 \mathrm{~dB}=-26.10 \mathrm{dBm}=2.455 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.473, \mathrm{Z}_{\mathrm{CE}}=83.61 \Omega, \mathrm{Z}_{\mathrm{CO}}=29.90 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 53) \Omega=51.48 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=53 \Omega$ parallel with 0.35 pF capacitor at $7.1 \mathrm{GHz}=31.46 \Omega+\mathrm{j} \cdot(-26.03) \Omega$ $\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=50.00 \Omega+\mathrm{j} \cdot(41.38) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations $(G>15.10 \mathrm{~dB}): \mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.2+11.5=17.7 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=7.6+8.2=$ $15.8 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=7.6+11.5=19.1 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=8.2+11.5=19.7 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.52 \mathrm{~dB}=1.127, \mathrm{~F}_{2}=0.89 \mathrm{~dB}=1.227, \mathrm{~F}_{3}=0.98 \mathrm{~dB}=1.253, \mathrm{~F}_{4}=1.21 \mathrm{~dB}=1.321, \mathrm{G}_{1}=6.2 \mathrm{~dB}=4.169$, $\mathrm{G}_{2}=7.6 \mathrm{~dB}=5.754 ; \mathrm{F}(1,4)=1.127+(1.321-1) / 4.169=1.204=0.81 \mathrm{~dB} ; \mathrm{F}(2,3)=1.227+$ $(1.253-1) / 5.754=1.283=1.08 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable:
$\left|S_{11}\right|=0.638<1 ;\left|\mathrm{S}_{22}\right|=0.550<1 ; \mathrm{K}=1.197>1 ;|\Delta|=|(0.265)+\mathrm{j} \cdot(0.072)|=0.274<1$
$\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=10.18=10.08 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.029 ; \mathrm{C}_{1}=(-0.358)+\mathrm{j} \cdot(0.355) ; \Gamma_{\mathrm{S}}=(-0.583)+\mathrm{j} \cdot(-0.578)=0.821 \angle-135.2^{\circ}$
$\mathrm{B}_{2}=0.820 ; \mathrm{C}_{2}=(-0.379)+\mathrm{j} \cdot(-0.120) ; \Gamma_{\mathrm{L}}=(-0.742)+\mathrm{j} \cdot(0.236)=0.779 \angle 162.4^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=140.2^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{s}}\right)=-2.872 ; \theta_{\mathrm{p} 1}=109.2^{\circ}$ or $\theta_{\mathrm{S} 2}=175.0^{\circ} ; \operatorname{Im}\left(\mathrm{ys}^{\prime}\right)=2.872 ; \theta_{\mathrm{p} 2}=70.8^{\circ}$ output: $\theta_{\mathrm{L} 1}=169.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.483 ; \theta_{\mathrm{p} 1}=111.9^{\circ}$ or $\theta_{\mathrm{L} 2}=28.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.483 ; \theta_{\mathrm{p} 2}=68.1^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{LL} 1}=169.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.483+(-2.872)=-5.355 ; \theta_{\mathrm{p} 1}=100.6^{\circ} ; \theta_{\mathrm{S} 1}=140.2^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=28.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.483+(-2.872)=-0.389 ; \theta_{\mathrm{p} 2}=158.8^{\circ} ; \theta_{\mathrm{S} 1}=140.2^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=169.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.483+(2.872)=0.389 ; \theta_{\mathrm{p} 3}=21.2^{\circ} ; \theta_{\mathrm{S} 2}=175.0^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=28.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.483+(2.872)=5.355 ; \theta_{\mathrm{p} 4}=79.4^{\circ} ; \theta_{\mathrm{S} 2}=175.0^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=169.4+140.2=309.6 ; \theta_{\mathrm{p}}=100.6 ; \mathrm{A} \sim 31137.7$
e2) $\theta_{\mathrm{s}}=28.2+140.2=168.4 ; \theta_{\mathrm{p}}=158.8 ; \mathrm{A} \sim 26740.5$
e3) $\theta_{\mathrm{s}}=169.4+175.0=344.4 ; \theta_{\mathrm{p}}=21.2 ; \mathrm{A} \sim 7317.3$
e4) $\theta_{\mathrm{s}}=28.2+175.0=203.3 ; \theta_{\mathrm{p}}=79.4 ; \mathrm{A} \sim 16145.9$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 33

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=70 \Omega /(34.3-\mathrm{j} \cdot 38.7) \Omega=0.898+\mathrm{j} \cdot 1.013$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0388+\mathrm{j} \cdot 0.0238)] /(0.02+0.0388+\mathrm{j} \cdot 0.0238)$
$\Gamma=(-0.415)+\mathrm{j} \cdot(-0.237) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.478 \angle-150.3^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless coupled line coupler, matched at the input; Isolation $I=24.60 \mathrm{~dB}$ $\mathrm{P}_{\text {in }}=3.05 \mathrm{~mW}=4.843 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=4.843 \mathrm{dBm}-24.60 \mathrm{~dB}=-19.76 \mathrm{dBm}=10.575 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.606, \mathrm{Z}_{\mathrm{CE}}=100.95 \Omega, \mathrm{Z}_{\mathrm{CO}}=24.76 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 31) \Omega=39.37 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=31 \Omega$ parallel with 0.62 nH inductor at $9.0 \mathrm{GHz}=17.40 \Omega+\mathrm{j} \cdot(15.38) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, Z_{\text {in }}=Z_{1}{ }^{2} / Z_{L}=Z_{0} \cdot R_{L} / Z_{L}=50.00 \Omega+\mathrm{j} \cdot(-44.21) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain (1,$2 ; 1,3$).

Valid combinations ($\mathrm{G}>16.70 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.0+11.1=17.1 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.1+9.9=$ $18.0 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.1+11.1=19.2 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=9.9+11.1=21.0 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.53 \mathrm{~dB}=1.130, \mathrm{~F}_{2}=0.77 \mathrm{~dB}=1.194, \mathrm{~F}_{3}=0.92 \mathrm{~dB}=1.236, \mathrm{~F}_{4}=1.27 \mathrm{~dB}=1.340, \mathrm{G}_{1}=6.0 \mathrm{~dB}=3.981$, $\mathrm{G}_{2}=8.1 \mathrm{~dB}=6.457 ; \mathrm{F}(1,4)=1.130+(1.340-1) / 3.981=1.215=0.85 \mathrm{~dB} ; \mathrm{F}(2,3)=1.194+$ $(1.236-1) / 6.457=1.247=0.96 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable:
$\left|S_{11}\right|=0.638<1 ;\left|S_{22}\right|=0.520<1 ; K=1.103>1 ;|\Delta|=|(-0.118)+\mathrm{j} \cdot(0.254)|=0.280<1$
$\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=21.15=13.25 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.058 ; \mathrm{C}_{1}=(-0.522)+\mathrm{j} \cdot(-0.018) ; \Gamma_{\mathrm{S}}=(-0.850)+\mathrm{j} \cdot(0.030)=0.851 \angle 178.0^{\circ}$
$\mathrm{B}_{2}=0.785 ; \mathrm{C}_{2}=(-0.213)+\mathrm{j} \cdot(-0.318) ; \Gamma_{\mathrm{L}}=(-0.447)+\mathrm{j} \cdot(0.667)=0.803 \angle 123.8^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=165.2^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-3.239 ; \theta_{\mathrm{p} 1}=107.2^{\circ}$ or $\theta_{\mathrm{S} 2}=16.9^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=3.239 ; \theta_{\mathrm{p} 2}=72.8^{\circ}$ output: $\theta_{\mathrm{L} 1}=9.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.695 ; \theta_{\mathrm{p} 1}=110.4^{\circ}$ or $\theta_{\mathrm{L} 2}=46.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.695 ; \theta_{\mathrm{p} 2}=69.6^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=9.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.695+(-3.239)=-5.934 ; \theta_{\mathrm{p} 1}=99.6^{\circ} ; \theta_{\mathrm{S} 1}=165.2^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=46.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.695+(-3.239)=-0.544 ; \theta_{\mathrm{p} 2}=151.5^{\circ} ; \theta_{\mathrm{S} 1}=165.2^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=9.8^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.695+(3.239)=0.544 ; \theta_{\mathrm{p} 3}=28.5^{\circ} ; \theta_{\mathrm{S} 2}=16.9^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=46.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.695+(3.239)=5.934 ; \theta_{\mathrm{p} 4}=80.4^{\circ} ; \theta_{\mathrm{S} 2}=16.9^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=9.8+165.2=175.0 ; \theta_{\mathrm{p}}=99.6 ; \mathrm{A} \sim 17420.8$
e2) $\theta_{\mathrm{s}}=46.4+165.2=211.5 ; \theta_{\mathrm{p}}=151.5 ; \mathrm{A} \sim 32042.9$
e3) $\theta_{\mathrm{s}}=9.8+16.9=26.7 ; \theta_{\mathrm{p}}=28.5 ; \mathrm{A} \sim 760.7$
e4) $\theta_{\mathrm{s}}=46.4+16.9=63.2 ; \theta_{\mathrm{p}}=80.4$; A ~ 5086.7
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 34

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=80 \Omega /(33.0-\mathrm{j} \cdot 54.7) \Omega=0.647+\mathrm{j} \cdot 1.072$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0206-\mathrm{j} \cdot 0.0147)] /(0.02+0.0206-\mathrm{j} \cdot 0.0147)$
$\Gamma=(-0.129)+\mathrm{j} \cdot(0.315) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.341 \angle 112.2^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless quadrature coupler, matched at the input; Isolation $\mathrm{I}=\mathrm{D}+\mathrm{C}=30.30 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=1.55 \mathrm{~mW}=1.903 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=1.903 \mathrm{dBm}-30.30 \mathrm{~dB}=-28.40 \mathrm{dBm}=1.447 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.457, \mathrm{y}_{2}=1.124, \mathrm{y}_{1}=0.514, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=97.3 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=44.5 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 58) \Omega=53.85 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=58 \Omega$ series with 0.33 pF capacitor at $7.6 \mathrm{GHz}=58.00 \Omega+\mathrm{j} \cdot(-63.46) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{1}^{2} / \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}=22.76 \Omega+\mathrm{j} \cdot(24.90) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations ($\mathrm{G}>16.65 \mathrm{~dB}$): $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.7+10.2=16.9 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=8.4+9.8=$ $18.2 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=8.4+10.2=18.6 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=9.8+10.2=20.0 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.69 \mathrm{~dB}=1.172, \mathrm{~F}_{2}=0.77 \mathrm{~dB}=1.194, \mathrm{~F}_{3}=1.07 \mathrm{~dB}=1.279, \mathrm{~F}_{4}=1.29 \mathrm{~dB}=1.346, \mathrm{G}_{1}=6.7 \mathrm{~dB}=4.677$, $\mathrm{G}_{2}=8.4 \mathrm{~dB}=6.918 ; \mathrm{F}(1,4)=1.172+(1.346-1) / 4.677=1.246=0.96 \mathrm{~dB} ; \mathrm{F}(2,3)=1.194+$ $(1.279-1) / 6.918=1.244=0.95 \mathrm{~dB}$;
$\mathrm{F}(1,4)>\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 2,3
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable: $\left|\mathrm{S}_{11}\right|=0.650<1 ;\left|\mathrm{S}_{22}\right|=0.520<1 ; \mathrm{K}=1.099>1 ;|\Delta|=|(-0.133)+\mathrm{j} \cdot(0.247)|=0.281<1$ $\left.\mathrm{b}_{-} 1\right) \mathrm{G}_{\mathrm{Tmax}}=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=23.05=13.63 \mathrm{~dB}$
b_2) Complex calculus from C8/2017, S106:
$\mathrm{B}_{1}=1.073 ; \mathrm{C}_{1}=(-0.526)+\mathrm{j} \cdot(-0.072) ; \Gamma_{\mathrm{S}}=(-0.853)+\mathrm{j} \cdot(0.117)=0.861 \angle 172.2^{\circ}$
$B_{2}=0.769 ; C_{2}=(-0.208)+\mathrm{j} \cdot(-0.313) ; \Gamma_{L}=(-0.448)+\mathrm{j} \cdot(0.675)=0.810 \angle 123.6^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=168.6^{\circ} ; \operatorname{Im}\left(\mathrm{ys}_{\mathrm{S}}\right)=-3.381 ; \theta_{\mathrm{p} 1}=106.5^{\circ}$ or $\theta_{\mathrm{S} 2}=19.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=3.381 ; \theta_{\mathrm{p} 2}=73.5^{\circ}$ output: $\theta_{\mathrm{L} 1}=10.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.761 ; \theta_{\mathrm{p} 1}=109.9^{\circ}$ or $\theta_{\mathrm{L} 2}=46.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.761 ; \theta_{\mathrm{p} 2}=70.1^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=10.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.761+(-3.381)=-6.142 ; \theta_{\mathrm{p} 1}=99.2^{\circ} ; \theta_{\mathrm{S} 1}=168.6^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=46.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.761+(-3.381)=-0.620 ; \theta_{\mathrm{p} 2}=148.2^{\circ} ; \theta_{\mathrm{S} 1}=168.6^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=10.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.761+(3.381)=0.620 ; \theta_{\mathrm{p} 3}=31.8^{\circ} ; \theta_{\mathrm{S} 2}=19.2^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=46.2^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.761+(3.381)=6.142 ; \theta_{\mathrm{p} 4}=80.8^{\circ} ; \theta_{\mathrm{S} 2}=19.2^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=10.3+168.6=178.9 ; \theta_{\mathrm{p}}=99.2 ; \mathrm{A} \sim 17750.9$
e2) $\theta_{\mathrm{s}}=46.2+168.6=214.8 ; \theta_{\mathrm{p}}=148.2 ; \mathrm{A} \sim 31832.7$
e3) $\theta_{\mathrm{s}}=10.3+19.2=29.5 ; \theta_{\mathrm{p}}=31.8 ; \mathrm{A} \sim 936.5$
e4) $\theta_{\mathrm{s}}=46.2+19.2=65.4 ; \theta_{\mathrm{p}}=80.8 ; \mathrm{A} \sim 5279.7$
Smallest substrate area is occupied by solution e3 (d3)

Subject no. 35

1. $\mathrm{y}=\mathrm{Y} / \mathrm{Y}_{0}=\mathrm{Z}_{0} / \mathrm{Z}=100 \Omega /(55.9+\mathrm{j} \cdot 61.3) \Omega=0.812-\mathrm{j} \cdot 0.891$
2. $\mathrm{Y}_{0}=0.02 \mathrm{~S} ; \Gamma=\left(\mathrm{Y}_{0}-\mathrm{Y}\right) /\left(\mathrm{Y}_{0}+\mathrm{Y}\right)=[0.02-(0.0275-\mathrm{j} \cdot 0.0313)] /(0.02+0.0275-\mathrm{j} \cdot 0.0313)$
$\Gamma=(-0.413)+\mathrm{j} \cdot(0.387) \leftrightarrow \operatorname{Re} \Gamma+\mathrm{j} \cdot \operatorname{Im} \Gamma$ or $\Gamma=0.566 \angle 136.9^{\circ} \leftrightarrow|\Gamma| \angle \arg (\Gamma)$
3. a) Lossless quadrature coupler, matched at the input; Isolation $I=20.20 \mathrm{~dB}$
$\mathrm{P}_{\text {in }}=2.50 \mathrm{~mW}=3.979 \mathrm{dBm} ; \mathrm{P}_{\text {is }}=\mathrm{P}_{\text {in }}-\mathrm{I}=3.979 \mathrm{dBm}-20.20 \mathrm{~dB}=-16.22 \mathrm{dBm}=23.875 \mu \mathrm{~W}$
b) $\mathrm{L} 2, \mathrm{C} 12 / 2017, \beta=10^{-\mathrm{C} / 20}=0.585, \mathrm{y}_{2}=1.234, \mathrm{y}_{1}=0.722, \mathrm{Z}_{1}=\mathrm{Z}_{0} / \mathrm{y}_{1}=69.2 \Omega, \mathrm{Z}_{2}=\mathrm{Z}_{0} / \mathrm{y}_{2}=40.5 \Omega$
4. a) $\mathrm{Z}_{1}=\sqrt{ }\left(\mathrm{Z}_{0} \cdot \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(50 \cdot 45) \Omega=47.43 \Omega$
b) $\mathrm{Z}_{\mathrm{L}}=45 \Omega$ parallel with 0.73 nH inductor at $7.6 \mathrm{GHz}=16.88 \Omega+\mathrm{j} \cdot(21.79) \Omega$
$\theta=\pi / 4, \tan (\beta \cdot 1) \rightarrow \infty, Z_{\text {in }}=Z_{1}^{2} / Z_{L}=Z_{0} \cdot R_{L} / Z_{L}=50.00 \Omega+j \cdot(-64.55) \Omega$
5. a) From the 6 possible combinations, 2 don't meet the required gain $(1,2 ; 1,3)$.

Valid combinations $(G>15.40 \mathrm{~dB}): \mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{4}=6.8+10.5=17.3 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{3}=7.6+8.2=$ $15.8 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{2}+\mathrm{G}_{4}=7.6+10.5=18.1 \mathrm{~dB} ; \mathrm{G}=\mathrm{G}_{3}+\mathrm{G}_{4}=8.2+10.5=18.7 \mathrm{~dB}$;
b) Friis Formula (C9/2017, S 92), $\mathrm{F}=\mathrm{F}_{\mathrm{a}}+\left(\mathrm{F}_{\mathrm{b}}-1\right) / \mathrm{G}_{\mathrm{a}}$; We note that $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}<\mathrm{F}_{4}$;

From the 4 combinations that meet the gain requirement, we must compare only $(1,4)$ and $(2,3)$ because $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{2}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{2}$ and $\mathrm{F}_{2}+\left(\mathrm{F}_{3}-1\right) / \mathrm{G}_{2}<\mathrm{F}_{3}+\left(\mathrm{F}_{4}-1\right) / \mathrm{G}_{3}$
$\mathrm{F}_{1}=0.56 \mathrm{~dB}=1.138, \mathrm{~F}_{2}=0.81 \mathrm{~dB}=1.205, \mathrm{~F}_{3}=0.93 \mathrm{~dB}=1.239, \mathrm{~F}_{4}=1.22 \mathrm{~dB}=1.324, \mathrm{G}_{1}=6.8 \mathrm{~dB}=4.786$, $\mathrm{G}_{2}=7.6 \mathrm{~dB}=5.754 ; \mathrm{F}(1,4)=1.138+(1.324-1) / 4.786=1.205=0.81 \mathrm{~dB} ; \mathrm{F}(2,3)=1.205+$ $(1.239-1) / 5.754=1.261=1.01 \mathrm{~dB}$;
$\mathrm{F}(1,4)<\mathrm{F}(2,3) \rightarrow$ For minimal noise factor we must use devices 1,4
6. a) The transistor can be conjugately matched for maximum gain only if it is unconditionally stable:
$\left|S_{11}\right|=0.641<1 ;\left|S_{22}\right|=0.520<1 ; \mathrm{K}=1.102>1 ;|\Delta|=|(-0.122)+\mathrm{j} \cdot(0.252)|=0.280<1$
b_1) $\mathrm{G}_{T \max }=\left|\mathrm{S}_{21}\right| /\left|\mathrm{S}_{12}\right| \cdot\left[\mathrm{K}-\sqrt{ }\left(\mathrm{K}^{2}-1\right)\right]=21.61=13.35 \mathrm{~dB}$
b_2) Complex calculus from $\mathrm{C} 8 / 2017$, S106:
$\mathrm{B}_{1}=1.062 ; \mathrm{C}_{1}=(-0.523)+\mathrm{j} \cdot(-0.032) ; \Gamma_{\mathrm{S}}=(-0.852)+\mathrm{j} \cdot(0.052)=0.853 \angle 176.5^{\circ}$
$\mathrm{B}_{2}=0.781 ; \mathrm{C}_{2}=(-0.212)+\mathrm{j} \cdot(-0.317) ; \Gamma_{\mathrm{L}}=(-0.447)+\mathrm{j} \cdot(0.669)=0.805 \angle 123.7^{\circ}$
c) Complex calculus from $\mathrm{C} 7 / 2017, \mathrm{~S} 28 \div 34,2$ solutions for the input/output match, $\mathrm{Z}_{0}=50 \Omega$ lines input: $\theta_{\mathrm{S} 1}=166.0^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=-3.276 ; \theta_{\mathrm{p} 1}=107.0^{\circ}$ or $\theta_{\mathrm{S} 2}=17.4^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{S}}\right)=3.276 ; \theta_{\mathrm{p} 2}=73.0^{\circ}$ output: $\theta_{\mathrm{L} 1}=9.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.713 ; \theta_{\mathrm{p} 1}=110.2^{\circ}$ or $\theta_{\mathrm{L} 2}=46.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.713 ; \theta_{\mathrm{p} 2}=69.8^{\circ}$
d) Second stage is identical to the first one, we can reuse c) results. There are 4 solutions (any offers the points) from the first stage output towards the second stage input (Pr.2017, C10/2017,S76 $\div 84$):
d1) $\theta_{\mathrm{L} 1}=9.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.713+(-3.276)=-5.989 ; \theta_{\mathrm{p} 1}=99.5^{\circ} ; \theta_{\mathrm{S} 1}=166.0^{\circ}$;
d2) $\theta_{\mathrm{L} 2}=46.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.713+(-3.276)=-0.562 ; \theta_{\mathrm{p} 2}=150.6^{\circ} ; \theta_{\mathrm{S} 1}=166.0^{\circ}$;
d3) $\theta_{\mathrm{L} 1}=9.9^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=-2.713+(3.276)=0.562 ; \theta_{\mathrm{p} 3}=29.4^{\circ} ; \theta_{\mathrm{S} 2}=17.4^{\circ}$;
d4) $\theta_{\mathrm{L} 2}=46.3^{\circ} ; \operatorname{Im}\left(\mathrm{y}_{\mathrm{L}}\right)=2.713+(3.276)=5.989 ; \theta_{\mathrm{p} 4}=80.5^{\circ} ; \theta_{\mathrm{S} 2}=17.4^{\circ}$;
e) We note that the electrical length $\theta=\beta \cdot 1$ is proportional to the physical length and the layout is T shaped (series lines are perpendicular to the shunt stub), $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }} \sim$ Substrate Area. We must compute all solutions for d) and compare individual products $\Sigma \theta_{\text {serie }} \times \theta_{\text {paralel }}$.
e1) $\theta_{\mathrm{s}}=9.9+166.0=176.0 ; \theta_{\mathrm{p}}=99.5 ; \mathrm{A} \sim 17503.9$
e2) $\theta_{\mathrm{s}}=46.3+166.0=212.3 ; \theta_{\mathrm{p}}=150.6 ; \mathrm{A} \sim 31990.4$
e3) $\theta_{\mathrm{s}}=9.9+17.4=27.4 ; \theta_{\mathrm{p}}=29.4 ; \mathrm{A} \sim 803.1$
e4) $\theta_{\mathrm{s}}=46.3+17.4=63.8 ; \theta_{\mathrm{p}}=80.5 ; \mathrm{A} \sim 5133.8$
Smallest substrate area is occupied by solution e3 (d3)

