Laboratory 4 (w9-10)
2021/2022
Microwave Devices and Circuits

Short theory

Reflection and power / Model

- The source has the ability to sent to the load a certain maximum power (available power) P_{a}
- For a particular load the power sent to the load is less than the maximum (mismatch) $P_{L}<P_{a}$
- The phenomenon is "as if" (model) some of the power is reflected $P_{r}=P_{a}-P_{L}$
- The power is a scalar!

Power / Matching

- Two ports in which matching influences the power transfer

Amplifier as two-port

- Charaterized with S parameters
- normalized at Zo (implicit 50 Ω)
- Datasheets: S parameters for specific bias conditions

S parameters

Amplifier as two-port

- For an amplifier two-port we are interested in:
- stability
- power gain
- noise (sometimes - small signals)
- linearity (sometimes - large signals)

Stability

$$
\left|\Gamma_{i n}\right|<1 \quad\left|S_{11}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1-S_{22} \cdot \Gamma_{L}}\right|<1
$$

- We can calculate conditions to be met by Γ_{L} to achieve stability

$$
\left|\Gamma_{\text {out }}\right|<1 \quad\left|S_{22}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{S}}{1-S_{11} \cdot \Gamma_{S}}\right|<1
$$

- We can calculate conditions to be met by $\Gamma_{\text {s }}$ to achieve stability

Output stability circle (CSOUT)

$$
\left|\Gamma_{L}-\frac{\left(S_{22}-\Delta \cdot S_{11}^{*}\right)^{*} \mid}{\left|S_{22}\right|^{2}-|\Delta|^{2}}\right|=\left|\frac{S_{12} \cdot S_{21}}{\left|S_{22}\right|^{2}-|\Delta|^{2}}\right|
$$

$$
\left|\Gamma_{L}-C_{L}\right|=R_{L}
$$

- We obtain the equation of a circle in the complex plane, which represents the locus of Γ_{L} for the limit between stability and instability $\left(\left|\Gamma_{\text {in }}\right|=1\right.$)
- This circle is the output stability circle (Γ_{L})

$$
C_{L}=\frac{\left(S_{22}-\Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2}-|\Delta|^{2}} \quad R_{L}=\frac{\left|S_{12} \cdot S_{21}\right|}{\left|\left|S_{22}\right|^{2}-|\Delta|^{2}\right|}
$$

Input stability circle (CSIN)

- Similarly

$$
\left|\Gamma_{\text {out }}\right|=1
$$

$$
\left|S_{22}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{S}}{1-S_{11} \cdot \Gamma_{S}}\right|=1
$$

- We obtain the equation of a circle in the complex plane, which represents the locus of Γ_{S} for the limit between stability and instability ($\left|\Gamma_{\text {out }}\right|=1$)
- This circle is the input stability circle $\left(\Gamma_{S}\right)$

$$
C_{S}=\frac{\left(S_{11}-\Delta \cdot S_{22}^{*}\right)^{*}}{\left|S_{11}\right|^{2}-|\Delta|^{2}} \quad R_{S}=\frac{\left|S_{12} \cdot S_{21}\right|}{\left|\left|S_{11}\right|^{2}-|\Delta|^{2}\right|}
$$

ADS

Amplifier as two-port

- For an amplifier two-port we are interested in:
- stability
- power gain
- noise (sometimes - small signals)
- linearity (sometimes - large signals)

Design for Specified Gain

- In many cases we need an approach other than "brute force" when we prefer to design for less than the maximum obtainable gain, in order to:
- improve noise behavior (L3 + C9)
- improve stability
- improve VSWR
- control performance at multiple frequencies
- improve amplifier's bandwidth

Wide bandwidth amplifier

- Design for maximum gain at two different frequencies creates an frequency unbalanced amplifier

Wide bandwidth amplifier

- Design for maximum gain at highest frequency - Controlled mismatch at lower frequency
- eventually at more frequencies inside the bandwidth

Design for Specified Gain

- In the unilateral assumption:

$$
\begin{aligned}
& G_{S}=\frac{1-\left|\Gamma_{S}\right|^{2}}{\left|1-S_{11} \cdot \Gamma_{S}\right|^{2}} G_{T U}=\frac{1-\left|\Gamma_{S}\right|^{2}}{\left|1-S_{11} \cdot \Gamma_{S}\right|^{2}} \cdot|\underbrace{}_{G_{0}}=\left|S_{21}\right|^{2} \cdot \frac{1-\left|\Gamma_{L}\right|^{2}}{\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}} \underbrace{\text { U }}_{G_{L}=\frac{1-\left|\Gamma_{L}\right|^{2}}{\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}}} \\
& G_{s}=G_{s}\left(\Gamma_{s}\right) \\
& G_{L}=G_{L}\left(\Gamma_{L}\right)
\end{aligned}
$$

Design for Specified Gain

- If the unilateral assumption is justified :
- power gain added by the input matching circuit is not influenced by the output matching circuit $G_{s}=G_{s}\left(\Gamma_{s}\right)$
- power gain added by the output matching circuit is not influenced by the input matching circuit $\quad G_{L}=G_{L}\left(\Gamma_{L}\right)$
- Output /Input match can be designed independently
- We can impose different demands for input/output
- Total gain is:

$$
G_{T}=G_{S} \cdot G_{0} \cdot G_{L} \quad G_{T}[d B]=G_{S}[d B]+G_{0}[d B]+G_{L}[d B]
$$

$\mathrm{G}_{\mathrm{s}}\left(\Gamma_{\mathrm{s}}\right)$

$$
\mathbf{G}_{\mathbf{S}}\left(\Gamma_{\mathbf{S}}\right)
$$

$\operatorname{Im} \Gamma_{s}$
$\operatorname{Re} \Gamma_{S}$

$\mathrm{G}_{\mathrm{S}}\left(\Gamma_{\mathrm{S}}\right)$, constant value contours

$\mathrm{G}_{\mathrm{s}}\left(\Gamma_{\mathrm{s}}\right)$, constant value contours

$\mathrm{G}_{\mathrm{s}}[\mathrm{dB}]\left(\Gamma_{\mathrm{s}}\right)$, constant value contours

Input section constant gain circles

$$
\begin{gathered}
\left|\Gamma_{S}-\frac{g_{S} \cdot S_{11}^{*}}{1-\left(1-g_{S}\right) \cdot\left|S_{11}\right|^{2}}\right|=\frac{\sqrt{1-g_{S}} \cdot\left(1-\left|S_{11}\right|^{2}\right)}{1-\left(1-g_{S}\right) \cdot\left|S_{11}\right|^{2}} \quad\left|\Gamma_{S}-C_{S}\right|=R_{S} \\
C_{S}=\frac{g_{S} \cdot S_{11}^{*}}{1-\left(1-g_{S}\right) \cdot\left|S_{11}\right|^{2}} \quad R_{S}=\frac{\sqrt{1-g_{S}} \cdot\left(1-\left.\left|S_{S_{1}}\right|^{2}\right|^{2}\right.}{1-\left(1-g_{S}\right) \cdot\left|S_{11}\right|^{2}}
\end{gathered}
$$

- Equation of a circle in the complex plane where Γ_{S} is plotted
- Interpretation: Any reflection coefficient Γ_{S} which plotted in the complex plane lies on the circle drawn for $\mathrm{g}_{\text {circle }}=$ $\mathrm{G}_{\text {circle }} / G_{\mathrm{smax}}$ will lead to a gain $\mathrm{G}_{\mathrm{S}}=\mathrm{G}_{\text {circle }}$
- Any reflection coefficient Γ_{s} plotted outside this circle will lead to a gain $G_{S}<G_{\text {circle }}$
- Any reflection coefficient Γ_{s} plotted inside this circle will lead to a gain $G_{s}>G_{\text {circle }}$
- Similar discussion for output port $\left(\Gamma_{\llcorner }\right)$CCCIN/CCCOUT

CCCIN, CCCOUT

- Circles are plotted for requested values (in dB!) - It is usefull to compute $G_{\text {smax }}$ and $G_{L_{\max }}$ before
- in order to request relevant circles

CCCIN, CCCOUT

- Cercurile se reprezinta pentru valorile cerute in dB
- Este utila calcularea $G_{S_{\max }}$ si $G_{L \max }$ anterior

Amplifier as two-port

- For an amplifier two-port we are interested in:
- stability
- power gain
- noise (sometimes - small signals)
- linearity (sometimes - large signals)

Noise Figure F

The noise figure F, is a measure of the reduction in signal-to-noise ratio between the input and output of a device

$$
F=\left.\frac{S_{i} / N_{i}}{S_{o} / N_{o}}\right|_{T_{0}=290 K}
$$

$F\left(\Gamma_{5}\right)$

$\mathrm{F}[\mathrm{dB}]\left(\Gamma_{s}\right)$

$F\left(\Gamma_{S}\right)[d B]$

F[dB] $\left(\Gamma_{s}\right)$, constant value contours

$$
F\left(\Gamma_{\mathbf{S}}\right)[\mathrm{dB}]
$$

$\mathrm{G}_{\mathrm{s}}[\mathrm{dB}]\left(\Gamma_{\mathrm{s}}\right)$, constant value contours

「opt $=0.45 \angle 174^{\circ}$

CZ - Noise Circle (input port only!)

Example, LNA @ 5 GHz

- Low Noise Amplifier
- At the input port we must compromise between
- noise (input constant noise circle CZ)
- power gain (input constant gain circle CCCIN)
- stability (input stability circle CSIN)
- At the output port noise does not intervene (no influence). The compromise is between:
- power (output constant gain circle CCCOUT)
" stability (output stability circle CSOUT)

Input matching circuit

- If we can afford a 1.2dB decrease of the input gain for better NF, Q ($\mathrm{Gs}=1 \mathrm{~dB}$), position m 1 above is better
- We obtain better (smaller) NF

Output matching circuit

- output constant gain circles CCCOUT: -0.4dB, $-0.2 \mathrm{~dB}, o \mathrm{~dB},+0.2 \mathrm{~dB}$
- The lack of noise restrictions allows optimization for better gain (close to maximum - position m_{4})

LNA - Low Noise Amplifier

- Usually a transistor suitable for implementing an LNA at a certain frequency will have input gain circles and noise circles in the same area for Γ_{S}

Design for Specified Gain

- In the unilateral assumption:

$$
\begin{aligned}
& G_{S}=\frac{1-\left|\Gamma_{S}\right|^{2}}{\left|1-S_{11} \cdot \Gamma_{S}\right|^{2}} G_{T U}=\frac{1-\left|\Gamma_{S}\right|^{2}}{\left|1-S_{11} \cdot \Gamma_{S}\right|^{2}} \cdot|\underbrace{}_{G_{0}}=\left|S_{21}\right|^{2} \cdot \frac{1-\left|\Gamma_{L}\right|^{2}}{\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}} \underbrace{\text { U }}_{G_{L}=\frac{1-\left|\Gamma_{L}\right|^{2}}{\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}}} \\
& G_{s}=G_{s}\left(\Gamma_{s}\right) \\
& G_{L}=G_{L}\left(\Gamma_{L}\right)
\end{aligned}
$$

The Smith Chart, series reactance

The Smith Chart, shunt susceptance

Matching, series reactance

$$
\begin{aligned}
& z_{L}=r_{L}+j \cdot x_{L} \\
& z_{\text {in }}=r_{L}+j \cdot\left(x_{L}+x_{1}\right) \\
& r_{\text {in }}=r_{L}
\end{aligned}
$$

- Match can be obtained if and only if $r_{L}=1$
- we compensate the reactive part of the load

$$
j \cdot x_{1}=-j \cdot x_{L}
$$

Matching, shunt susceptance

- Match can be obtained if and only if $g_{L}=1$
- we compensate the reactive part of the load $j \cdot b_{1}=-j \cdot b_{L}$

Smith chart, $\mathrm{r}=1$ and $\mathrm{g}=1$

series $C_{\text {, }}$ shunt $C /$ shunt C, series C

Forbidden area for current network

series L, shunt $L /$ shunt L, series L

series L, shunt $C /$ shunt C, series L

Forbidden area for

series C, shunt $L /$ shunt L, series C

Matching with 2 reactive elements (L Networks)

Matching with 2 reactive elements (L Networks)

- For any Γ_{L} there are at least 2 possible L networks to achieve match ($L+C$)
- For some starting areas on the Smith Chart there are 4 possibilities ($+2 \mathrm{C}+\mathrm{C} / \mathrm{L}+\mathrm{L}$ networks)
- We choose the network that requires components with existent/practically realizable values
- By adding the resistive elements, we can supplement the number of networks but with loss of signal power (not recommended)

Practical Procedure

Step o

- Laboratory 3-4 will take 2 sessions to complete:
- lab 3: In the first session you will work with the design data in the example in the lab manual in order to create the 4 (correct) schematics in a single ADS project
- lab 4: starting from the 4 (verified) schematics to design your amplifier (individual data)
- Caution! the 4 schematics must be saved in the "networks" folder inside the "..._prj" folder (ADS project) in order to belong to that particular project (and have simulation enabled)

Step o

- Write by hand on a sheet of paper 100 times:
- I solemnly promise to read the text AND NOT to jump from picture to picture

Step 1

- Get from the online exam interface from the rf-opto server your individual data
- design frequency - fo [GHz]
- noise factor - NF [dB] (upper limit for the design, if you obtain a lower value it's better, the lowest possible value is highly desirable)
- power gain - G [dB] (lower limit for the design, if you obtain a higher value it's better, acceptable)

Step 2

- change the simulation frequency in schematic 1 to fo and simulate it again

Step 3

- check some values in the table (some obtained from controllers, some from equations!)

- verify that the transistor can meet the design requirements (otherwise you must choose another transistor)
- NFmin < NF
- MAG > G

Step 4

- check some values in the table (some obtained from equations!)

Eqngamma_opt=Sopt
Ean $\mathrm{G} 0=10^{*} \log \left(\right.$ mag $\left.(S(2,1))^{+2} 2\right)$
EqnGSmax $=10 * \log \left(1 /\left(1-\operatorname{mag}(\mathrm{S}(1,1))^{*} 2\right)\right) \quad E q n G L m a x=10 * \log \left(1 /\left(1-\operatorname{mag}(\mathrm{S}(2,2))^{* *} 2\right)\right)$

- To meet the gain requirement choose the supplemental values needed (supplemental to fixed value G_{0})
$G_{\text {design }}[d B]=G_{S_{-} d e s i g n}[d B]+G_{0}[d B]+G_{L_{-} \text {design }}[d B]$
$G_{d e s i g n}[d B]>G \quad G_{S_{-} \text {design }}[d B]<G S \max \quad G_{L_{-} \text {design }}[d B]<G L \max$

Step 5

- in schematic 1 change the values for the circles (instead of $\{1,2,3\}$ choose some values close to GS_design, GL_design, NF_design) all numerical values must be in dB

Step 6

- simulate again schematic 1, plot groups of circles and verify they are in the right position

Step 7

- change the simulation frequency in schematic 2 to fo
- analyze results in schematic 1 and choose a single circle as target for the design (in VAR):
- stability (input/output)
- gain (input GS_design/output GL_design)
- noise (input NF_design)
- plotting these circles is not required
- they will be effectively used in schematic 3

Step 7

- even if the circles are not plotted, they are computed (for the transistor)
- 3 input plane (stability/gain/noise)
- 2 output (stability/gain)
- It is recommended to provide a margin for the design:
- G_design > G + Δ G
- NF_design < NF - $\Delta N F$
- simulate schematic 2 again

Step 8

- change the simulation frequency in schematic 3 - fo and simulate it again
- plot and use the circles computed in schematic 2 as target while tuning

Step 9

- tune the components in the two L networks to reach the desired points

Step 10

- tune the components in the two L networks to reach the desired points

Step 11

- if you cannot reach the appropriate position (by relation to the circles) then most likely the desired position lies in the forbidden area for that particular L network

- change to another L network (LC/CL, series/shunt etc)

Step 12

- insert the components obtained by tuning in schematic 3 as input/output matching networks for the transistor in schematic 4 (values and network shape!)
- change the simulation frequencies in schematic 4 around fo (fo in the center of the simulation range) and simulate it again
Obtained in schematic 3

Step 13

tune the components in the input/output matching networks for better results

Final tune

- input components influence both noise and gain
- they are first to tune, only these 2 while other components remain constant, checking the fulfillment of noise design target while sacrificing (accept worsening of) the gain (up to a point)

Final tune

- output components influence only gain
" they are tuned next, only these 2 while other components remain constant, checking the fulfillment of gain design target, compensating its worsening during previous noise optimization

Final design

- We obtain (after tuning) the final values and check the fulfillment of the design goal:
- Power gain - higher than the design goal, with a margin ($0.5,1,2 \mathrm{~dB}$), but we don't sacrifice the noise performance in order to increase it further
- Band Pass behavior, around fo, is desirable (at least one of the L networks must be a HPF network)

Final design

- We obtain (after tuning) the final values and check the fulfillment of the design data:
- Noise factor - lower than the design goal, as low as possible, the lower the better

rf-opto

- Online exam, Laboratory 4
- You must upload to the server 4 files:
" project zap file (required)
- final schematic (sch4) - after final tune (image file: jpg/png, get it using "print screen")
- result: gain - after final tune (image file: jpg/png, get it using "print screen")
" result: noise - after final tune (image file: jpg/png, get it using "print screen")

Contact

- Laboratorul de microunde si optoelectronica
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro

