Laboratory 5 (w11-14)
2023/2024
Microwave Devices and Circuits
for Radiocommunications

MDCR Project

Assignment

- Design a low-noise multi-stage transistor amplifier required to provide a power gain of $G[d B]$ and a noise factor of $F[d B]$ at the design frequency $f[\mathrm{GHz}]$.
- At the output of the amplifier insert a order \mathbf{N} bandpass filter with fractional bandwidth of the passband B [\%] around the design frequency.

Assignment

- The matching networks and filter must be implemented with transmission lines (stubs:
L7-L8).
- The use of the transistors we used in lectures and laboratories examples is not permitted (NE 71084, ATF 34143)
- Delivery deadline: last day of the semester (06.06.2021, 23:59:59)

Assignment

- this structure is frequently encountered in radiocommunication systems

Multistage amplifiers

- Interstage matching can be designed in two modes:
- Each stage is matched to a virtual $\Gamma=0$

Multistage amplifier design

- The design for input and output matching must be achieved on a single transistor schematic (recommended: easier)

Interstage matching

- One of the stages creates through its matching network a refflection coefficient $\Gamma=0$ towards which the other stage is matched

Interstage matching

- The two shunt stubs combine into a single one

Practical Procedure

Step - 1

- Split performance parameters on the 2 stages
- G
- F
- Uses Friis formula
- Pt. 3 example

$$
G_{c a s}=G_{1} \cdot G_{2} \quad F_{c a s}=F_{1}+\frac{1}{G_{1}}\left(F_{2}-1\right)
$$

- 2 equations, 4 unknowns, multiple solutions

Friis Formula (noise)

$$
G_{c a s}=G_{1} \cdot G_{2} \quad F_{c a s}=F_{1}+\frac{1}{G_{1}}\left(F_{2}-1\right)
$$

- Friis formula
- first stage: low noise factor, probably resulting in a smaller gain
- second stage: high gain, probably resulting in higher noise factor
- It's essential to introduce a design margin (reserve: $\Delta \mathrm{F}, \Delta \mathrm{G}$)
- $G=G_{\text {design }}+\Delta G$
- $\mathrm{F}=\mathrm{F}_{\text {design }}-\Delta \mathrm{F}$
- Interpretation of the design target
- $G>G_{\text {design, }}$ better, but it's not required to sacrifice other parameters to maximize the gain
- $\mathrm{F}<\mathrm{F}_{\text {design, }}$ better, the smaller the better, we must target the smallest possible noise factor as long as the other design parameters are met

Friis Formula (noise)

- Friis formula
- first stage: low noise factor, probably resulting in a smaller gain
- second stage: high gain, probably resulting in higher noise factor
- Division between the two stages (Estimated!)
- input stage: $\mathrm{F}_{1}=0.7 \mathrm{~dB}, \mathrm{G}_{1}=9 \mathrm{~dB}$
" output stage: $\mathrm{F}_{2}=1.2 \mathrm{~dB}, \mathrm{G} 2=13 \mathrm{~dB}$
- To verify the result apply Friis formula
- First transform to linear scale !

$$
\begin{array}{ll}
F_{1}=10^{\frac{F_{1}[d B]}{10}}=10^{0.07}=1.175 & G_{1}=10^{\frac{G_{1}[d B]}{10}}=10^{0.9}=7.943 \\
F_{2}=10^{\frac{F_{2}[d B]}{10}}=10^{0.12}=1.318 & G_{2}=10^{\frac{G_{2}[d B]}{10}}=10^{1.3}=19.953 \\
F_{c a s}=F_{1}+\frac{1}{G_{1}}\left(F_{2}-1\right)=1.215 & G_{c a s}=G_{1} \cdot G_{2}=158.49 \\
F_{c a s}=10 \cdot \log (1.215)=0.846 \mathrm{~dB} & G_{c a s}=10 \cdot \log (158.49)=22 \mathrm{~dB}
\end{array}
$$

Friis Formula (noise)

- Avago/Broadcom AppCAD

\triangle AppCAD - [NoiseCalc]

File Calculate Application Examples Options Help				
NoiseCalc	Set Number of Stages	$=2$	Calculate [F4]	
			Stage 1	Stage 2
	Stage Data	Units	\approx	$A 36$
	Stage Name:		Avago	Avago
	Noise Figure	dB	0.7	1.2
	Gain	dB	9	13
	Output IP3	dBm		
	dNF/dTemp	$\mathrm{dB} /{ }^{\circ} \mathrm{C}$	0	0
	dG/dTemp	$\mathrm{dB} /{ }^{\circ} \mathrm{C}$	0	0
	Stage Analysis:			
	NF (Temp corr)	dB	0.70	1.20
	Gain (Temp corr)	dB	9.00	13.00
	Input Power	dBm	50.00	-41.00
	Output Power	dBm	-41.00	-28.00
	d NF / d NF	$d B / d B$	0.97	0.15
	dNF/dGain	dB/dB	-0.03	0.00
	dIP3/dIP3	dBm/dBm	0.00	1.00

Enter System Parameters:

Input Power	-50	${ }^{\mathrm{dBm}}$
Analysis Temperature	25	${ }^{\circ} \mathrm{C}$
Noise BW	1	MHz
Ref Temperature	25	${ }^{\circ} \mathrm{C}$
S/N (for sensitivity)	10	dB
Noise Source (Ref)	290	${ }^{\circ} \mathrm{K}$

Gain =	22.00	
Noise Figure =	0.85	
Noise Temp		
SNR =	63.13	$d \mathrm{~B}$
MDS =	-113.13	dBm
Sensitivity =	-103.13	dBm
Noise Floor =	-173.13	m / H

Input IP3 $=$	-7.50	dBm
Output IP3 $=$	14.50	dBm
Input IM level $=$	-135.00	dBm
Input IM level $=$	-85.00	dBC
Output IM level $=$	-113.00	dBm
Output IM level $=$	-85.00	dBC
SFDR $=$	70.42	dB

Step - 1

Result:

- first amplifier G1/F1
- second amplifier G2/F2

Step - 2

- Choose appropriate transistor(s) (Gi/Fi)
- Time consuming
- Depending on the design frequency :
- bipolar
- unipolar
- Starting from selection guides recommended
- Pt. 5 example

Step - 2

- Few selection guides available on rf-opto
- -> Google: microwave/rf transistor, low noise, LNA

Low Noise pHEMTs (Typical Specifications @ $25^{\circ} \mathrm{C}$ Case Temperature)

Part Number	Gate Width ($\mu \mathrm{m}$)	Frequency Range (GHz)	Test Freq. (GHz)	$\begin{aligned} & V_{d d} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{dd}} \\ & (\mathrm{~mA}) \end{aligned}$	NF_{o} (dB)	Ga (dB)	$\begin{aligned} & 01 \mathrm{P} 3 \\ & (\mathrm{dBm}) \end{aligned}$	$\begin{aligned} & \mathrm{P}_{1 \mathrm{~dB}} \\ & (\mathrm{dBm}) \end{aligned}$	Package
ATF-33143	1600	0.45-6	2	4	80	0.5	15.0	33.5	+22	SOT-343 (SC-70)
ATF-331M4	1600	0.45-6	2	4	60	0.6	15.0	31	+19	MiniPak ${ }^{[2]}$
ATF-34143	800	0.45-6	2	4	60	0.5	17.5	31.5	+20	SOT-343 (SC-70)
ATF-35143	400	0.45-6	2	2	15	0.4	18.0	21	+10	SOT-343 (SC-70)
ATF-38143	800	0.45-6	2	2	10	0.4	16.0	22	+12	SOT-343 (SC-70)
ATF-36077	200	1.5-18	12	1.5	10	0.5	12.0	-	+5	70 mil SM
ATF-3619.3	20 n	15.18	17	15	15	17	10 n	-	+5	SOT-363 ISC.-701

Step - 2

- Take into account the typical variation of the parameters to estimate from test frequency to design frequency
- Noise factor increases with increasing frequency
- Gain decreases with increasing frequency

Step - 2

Result

- candidate T1: ATF34143
- candidate T2: NE71084

Step - 3

- Obtain model data for the candidate transistor(s)
- Most often S parameter files (Touchstone)
- Google, manufacturer site: S2p files, S parameters etc.

Step - 4

- Investigate the transistor
- schematic 1/lab 3-4
- compute some values (check G/F at design frequency)
- compute some circles (position, diameter)
- estimate/choose GS/GL
- similar to lab3-4
- for each transistor
- Pt. 7 example

Step - 4

- introduce a succession of multiple S parameter files and simulate (repeatedly)

Step - 4

- Result
- candidate T_{1} : ATF34143 la 3V, 20mA, GS1 = ~ ... $\mathrm{dB}, \mathrm{GL1}=\sim \ldots \mathrm{dB}$
- candidate T2: NE71084 la $3 \mathrm{~V}, 1 \mathrm{~mA}, \mathrm{GS} 2=\sim \ldots$ $\mathrm{dB}, \mathrm{GL2}=\sim \ldots \mathrm{dB}$

Step - 5

- For each transistor:
- Design of the input matching network
- schematics 1~2/lab 3-4
- circles on the Smith Chart
- stability circle
- noise circle(s) (~chosen F)
- gain circle(s) (~chosen GS)
- Pt. 8,9 example

Step - 5

- Use a marker to get the value of the reflection coefficient Γ_{S}
- draw a dummy circle to have a point for the marker

Step - 5

- Calculate the electrical lengths of the two series/parallel lines according to the examples in the course/project
" write down (on paper) the computation (!!"andrei" factor)

$$
\cos (\varphi+2 \theta)=-\left|\Gamma_{S}\right|
$$

$$
\theta_{s p}=\beta \cdot l=\tan ^{-1} \frac{\mp 2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}
$$

Step - 5

Result:

- electrical length E1, E2
- for each transistor

Step - 6

- For each transistor:
- Design of the output matching network
- schematics 1~2/lab 3-4
- circles on the Smith Chart
- stability circle
- noise circle(s) (-chosen F)
- gain circle(s) (~chosen GL)
- Pt. 8,9 example

Step - 6

- Use a marker to get the value of the reflection coefficient Γ_{L}

Step - 6

- Calculate the electrical lengths of the two series/parallel lines according to the examples in the course/project
" write down (on paper) the computation (!!"andrei" factor)

$$
\cos (\varphi+2 \theta)=-\left|\Gamma_{L}\right| \quad \theta_{s p}=\beta \cdot l=\tan ^{-1} \frac{\mp 2 \cdot\left|\Gamma_{L}\right|}{\sqrt{1-\left|\Gamma_{L}\right|^{2}}}
$$

Step - 6

Result:

- electrical length E3, E4
- for each transistor

Step - 7

- For each transistor
- Check E1, E2, E3, E4
- Insert lines E1, E2 as the input network and $\mathrm{E}_{3}, \mathrm{E}_{4}$ as the output network and check if the proposed G / NF results are obtained.
- Check and repeat the calculations
- Pt. 8,9 example

Step - 7

freq, GHz

Step - 7

freq, GHz

Step - 7

Result

- adopted T1: ATF34143 la 3V, 20mA, GS1 = ... dB, GL1 = ...dB
- adopted T2: NE71084 la 3V, 1mA , GS2 = ... dB, $\mathrm{GL2}=\ldots \mathrm{dB}$

Step - 8

- Following steps 1-7 we have two functional one transistor amplifier stages which fulfill Friis formulae:

$$
\begin{array}{lll}
=\mathrm{G}_{1}, \mathrm{G}_{2} & G_{\text {cas }}=G_{1} \cdot G_{2} & G_{c a s}[d B]=G_{\text {tena }}+\Delta G \\
=\mathrm{F}_{1}, \mathrm{~F}_{2} & F_{c a s}=F_{1}+\frac{1}{G_{1}}\left(F_{2}-1\right) & F_{\text {cas }}[d B]=F_{\text {tema }}-\Delta F
\end{array}
$$

- Cascade connection of the two amplifiers to get a single two stage amplifier
- Pt. 10 example

Step - 8

- Following steps 5,6 we know the electrical lengths of the lines from the output of first transistor and input of the second transistor

The two shunt stubs will combine into a single shunt stub

Step-8

- The two series lines keep their previous values
- Attention! solutions are dual +/- for both amplifiers, for every series line any of the two solutions are available (independently)
- The two shunt lines combine into a single shunt line
- Attention! admittances are in parallel and add up, not the electrical lengths
- Recovering $\operatorname{Im}\left(y_{1}\right), \operatorname{Im}\left(y_{2}\right)$ from step 5,6 computations is required
- Solutions for admittances are also dual, chose (+/-) values corresponding to already chosen solutions for the series lines

Step - 8

- 4 possible combinations
- admittances are in parallel and add up, not the electrical lengths

$$
\operatorname{Im}\left[y_{s p}\right]=\operatorname{Im}\left[y_{L 1}(\theta)\right]+\operatorname{Im}\left[y_{s 2}(\theta)\right]
$$

$$
\theta_{s p}=\tan ^{-1}\left(\operatorname{Im}\left[y_{s p}\right]\right)
$$

Step-8

- Compute the required admittance of the combined shunt stub
- $\operatorname{Im}(y)=\operatorname{Im}\left(y_{1}\right)+\operatorname{Im}\left(y_{2}\right)$
- Compute the electrical length that offer this admittance
- $\mathrm{E}=\tan ^{-1}(\operatorname{lm}(\mathrm{y}))$
- Combine the two amplifiers, keeping the series lines and replacing the interstage shunt stubs with the computed combined shunt stub

Step - 8

- Result
- final amplifier
- Simulate to verify computations
- Pt. 11 example

Step - 8

- Simulate to verify computations

Step - 9

- Design and draw filter schematic
- Pt. 13 example
- Depending on the type of filter formulae and schematic are different
- other type other than coupled-lines offers bonus point

Step - 9

- Attention! Filter design can be done only by computation
" due to high number of parameters (order 5-6, 1214 parameters) it's not possible to get good results by tuning

n	g_{n}	$Z_{o} J_{n}$	$Z_{o e}[\Omega]$	$Z_{o o}[\Omega]$
1	1.6703	0.306664	70.04	39.37
2	1.1926	0.111295	56.18	45.05
3	2.3661	0.09351	55.11	45.76
4	0.8419	0.111294	56.18	45.05
5	1.9841	0.306653	70.03	39.37

Step - 9

- Simulate to verify filter separately

Step - 9

- Check carefully the passband, and maximum ripple/loss in passband
- correct passband is significant in project grade
- eventual uncontrolled losses in passband will lower amplifier gain and gain assignment fulfillment might fail

Step - 10

- Follow lab 3 principles for final tune
- input lines mainly to change noise, output lines only change gain
- Pt. 14 example

Step - 11

- Implement supplemental design for additional points
- Proving additional points will require submission of archived ADS project (*.zap)

Contact

- Laboratorul de microunde si optoelectronica
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro

