Laboratory 5 (w11-14)

2023/2024

Microwave Devices and Circuits for Radiocommunications

MDCR Project

Assignment

- Design a low-noise multi-stage transistor amplifier required to provide a power gain of G [dB] and a noise factor of F [dB] at the design frequency f [GHz].
- At the output of the amplifier insert a order N bandpass filter with fractional bandwidth of the passband B [%] around the design frequency.

Assignment

- The matching networks and filter must be implemented with transmission lines (stubs: L7-L8).
- The use of the transistors we used in lectures and laboratories examples is not permitted (NE 71084, ATF 34143)
- Delivery deadline: last day of the semester (06.06.2021, 23:59:59)

 this structure is frequently encountered in radiocommunication systems

Multistage amplifiers

- Interstage matching can be designed in two modes:
 - Each stage is matched to a virtual Γ = o

Multistage amplifier design

The design for input and output matching must be achieved on a single transistor schematic (recommended: easier)

Interstage matching

 One of the stages creates through its matching network a refflection coefficient Γ=o towards which the other stage is matched

Interstage matching

The two shunt stubs combine into a single one

Practical Procedure

- Split performance parameters on the 2 stages
 - G
 - F
- Uses Friis formula
- Pt. 3 example

$$G_{cas} = G_1 \cdot G_2$$
 $F_{cas} = F_1 + \frac{1}{G_1} (F_2 - 1)$

2 equations, 4 unknowns, multiple solutions

Friis Formula (noise)

$$G_{cas} = G_1 \cdot G_2$$
 $F_{cas} = F_1 + \frac{1}{G_1} (F_2 - 1)$

Friis formula

- first stage: low noise factor, probably resulting in a smaller gain
- second stage: high gain, probably resulting in higher noise factor
- It's essential to introduce a design margin (reserve: ΔF , ΔG)

•
$$G = G_{design} + \Delta G$$

•
$$F = F_{design} - \Delta F$$

- Interpretation of the design target
 - G > G_{design}, better, but it's not required to sacrifice other parameters to maximize the gain
 - F < F_{design}, better, the smaller the better, we must target the smallest possible noise factor as long as the other design parameters are met

Friis Formula (noise)

Friis formula

- first stage: low noise factor, probably resulting in a smaller gain
- second stage: high gain, probably resulting in higher noise factor
- Division between the two stages (Estimated!)
 - input stage: F1 = 0.7 dB, G1 = 9 dB
 - output stage: F2 = 1.2 dB, G2 = 13 dB
- To verify the result apply Friis formula

First transform to linear scale !

$$F_{1} = 10 \frac{F_{1}[dB]}{10} = 10^{0.07} = 1.175$$

$$F_{2} = 10 \frac{F_{2}[dB]}{10} = 10^{0.12} = 1.318$$

$$F_{2} = 10 \frac{G_{1}[dB]}{10} = 10^{0.9} = 7.943$$

$$G_{1} = 10 \frac{G_{1}[dB]}{10} = 10^{0.9} = 7.943$$

$$G_{2} = 10 \frac{G_{1}[dB]}{10} = 10^{1.3} = 19.953$$

$$F_{cas} = F_{1} + \frac{1}{G_{1}}(F_{2} - 1) = 1.215$$

$$G_{cas} = G_{1} \cdot G_{2} = 158.49$$

$$F_{cas} = 10 \cdot \log(1.215) = 0.846 \, dB$$

$$G_{cas} = 10 \cdot \log(158.49) = 22 \, dB$$

Friis Formula (noise)

Avago/Broadcom AppCAD

PF.			1		2000 T					
loiseCalc	Set	Number of Stag	jes	= 2	Laicul	ate [F4]				
					Stage 1	Stag	je 2			
		Stage Da	ta	Units		A3	6>			
		Stage Name:			Avago Duplation	Ava	ago 36xxx			
		Noise Figure		dB	0.	7	1.	2		
		Gain		dB		9	1	3		
		Output IP3		dBm	Tu	0	14.	5		
		dNF/dTemp		dB/°C		0		0		
		dG/dTemp		dB/°C		0		0		
		Stage Analy	ysis:							
		NF (Temp co	(m	dB	0.7	0	1.2	0		
		Gain (Tempo	(noc	dB	9.0	10	13.0	0		
		Input Power		dBm	-50.0	10	-41.0	0		
		Output Power d NF/d NF		dBm	-41.0	0 -28.00		0		
				dB/dB	0.97 0.1		0.1	5		
		d NF/d Gain	-	dB/dB	-0.0	13	0.0	0		
		d IP3/d IP3		dBm/dBm	0.0	10	1.0	0		
Enter System Parameters:			Sys	tem Analysis.						
Input Power	-50	dBm		Gain =	22.00	dB		Input IP3 =	-7.50	dBm
Analysis Temperature	25	°C	N	oise Figure =	0.85	dB		Output IP3 =	14.50	dBm
Noise BW	1	MHz	N	oise Temp -	\$2.34	°К		Input IM level =	-135.00	dBm
Ref Temperature	25	°C		SNR =	63.13	dB		Input IM level =	-85.00	dBC
S/N (for sensitivity)	10	dB		MDS =	-113.13	dBm		Output IM level =	-113.00	dBm
Noise Source (Ref)	290	۴K		Sensitivity =	-103.13	dBm		Output IM level =	-85.00	dBC
			N	loise Floor =	-173.13	dBm/Hz		SFDR =	70.42	dB

Result:

- first amplifier G1/F1
- second amplifier G2/F2

- Choose appropriate transistor(s) (Gi/Fi)
- Time consuming
- Depending on the design frequency :
 - bipolar
 - unipolar
- Starting from selection guides recommended
- Pt. 5 example

Few selection guides available on rf-opto -> Google: microwave/rf transistor, low noise, LNA

Part Number	Gate Width (µm)	Frequency Range (GHz)	Test Freq. (GHz)	V _{dd} (V)	l _{dd} (mA)	NF _o (dB)	G _a (dB)	OIP3 (dBm)	P _{1 dB} (dBm)	Package
ATF-33143	1600	0.45 - 6	2	4	80	0.5	15.0	33.5	+22	SOT-343 (SC-70)
ATF-331M4	1600	0.45 - 6	2	4	60	0,6	15.0	31	+19	MiniPak ^[2]
ATF-34143	800	0.45 - 6	2	4	60	0.5	17.5	31.5	+20	SOT-343 (SC-70)
ATF-35143	400	0.45 - 6	2	2	15	0.4	18.0	21	+10	SOT-343 (SC-70)
ATF-38143	800	0.45 - 6	2	2	10	0.4	16.0	22	+12	SOT-343 (SC-70)
ATF-36077	200	1.5 - 18	12	1.5	10	0.5	12.0	2 2	+5	70 mil SM
ATE-36163	200	15-18	12	15	15	12	10.0		+5	SOT-363 (SC-70)

Low Noise pHEMTs (Typical Specifications @ 25°C Case Temperature)

- Take into account the typical variation of the parameters to estimate from test frequency to design frequency
 - Noise factor increases with increasing frequency

Result

- candidate T1: ATF34143
- candidate T2: NE71084

- Obtain model data for the candidate transistor(s)
- Most often S parameter files (Touchstone)
- Google, manufacturer site: S2p files, S parameters etc.

Investigate the transistor

- schematic 1/lab 3-4
- compute some values (check G/F at design frequency)
- compute some circles (position, diameter)
- estimate/choose GS/GL
 - similar to lab3-4
 - for each transistor
- Pt. 7 example

introduce a succession of multiple S parameter files and simulate (repeatedly)

Result

- candidate T1: ATF34143 la 3V, 20MA, GS1 = ~ ... dB, GL1 = ~ ...dB
- candidate T2: NE71084 la 3V, 1MA, GS2 = ~ ... dB, GL2 = ~ ...dB

- For each transistor:
- Design of the input matching network
 - schematics 1~2/lab 3-4
- circles on the Smith Chart
 - stability circle
 - noise circle(s) (~chosen F)
 - gain circle(s) (~chosen GS)
- Pt. 8,9 example

- Use a marker to get the value of the reflection coefficient Γ_s
 - draw a dummy circle to have a point for the marker

- Calculate the electrical lengths of the two series/parallel lines according to the examples in the course/project
 - write down (on paper) the computation (!!"andrei" factor)

Result:

- electrical length E1, E2
- for each transistor

- For each transistor:
- Design of the output matching network
 - schematics 1~2/lab 3-4
- circles on the Smith Chart
 - stability circle
 - noise circle(s) (~chosen F)
 - gain circle(s) (~chosen GL)
- Pt. 8,9 example

 Use a marker to get the value of the reflection coefficient Γ_L

- Calculate the electrical lengths of the two series/parallel lines according to the examples in the course/project
 - write down (on paper) the computation (!!"andrei" factor)

Result:

- electrical length E₃, E₄
- for each transistor

- For each transistor
- Check E1, E2, E3, E4
- Insert lines E1, E2 as the input network and E3, E4 as the output network and check if the proposed G / NF results are obtained.
 - Check and repeat the calculations

Pt. 8,9 example

freq, GHz

freq, GHz

- Result
 - adopted T1: ATF34143 la 3V, 20MA, GS1 = ... dB, GL1 = ...dB
 - adopted T2: NE71084 la 3V, 1mA, GS2 = ... dB, GL2 = ...dB

- Following steps 1-7 we have two functional one transistor amplifier stages which fulfill Friis formulae:
 - G_1, G_2 • $G_{cas} = G_1 \cdot G_2$ • $G_{cas} [dB] = G_{tema} + \Delta G$ • F_1, F_2 • $F_{cas} = F_1 + \frac{1}{G_1} (F_2 - 1)$ • $F_{cas} [dB] = F_{tema} - \Delta F$
- Cascade connection of the two amplifiers to get a single two stage amplifier
 Pt. 10 example

 Following steps 5,6 we know the electrical lengths of the lines from the output of first transistor and input of the second transistor

- The two series lines keep their previous values
 - Attention! solutions are dual +/- for both amplifiers, for every series line any of the two solutions are available (independently)
- The two shunt lines combine into a single shunt line
 - Attention! admittances are in parallel and add up, not the electrical lengths
 - Recovering Im(y₁), Im(y₂) from step 5,6 computations is required
 - Solutions for admittances are also dual, chose (+/-) values corresponding to already chosen solutions for the series lines

- 4 possible combinations
 - admittances are in parallel and add up, not the electrical lengths

- Compute the required admittance of the combined shunt stub
 - $Im(y) = Im(y_1) + Im(y_2)$
- Compute the electrical length that offer this admittance
 - E = tan⁻¹(Im(y))
- Combine the two amplifiers, keeping the series lines and replacing the interstage shunt stubs with the computed combined shunt stub

Result

final amplifier

Simulate to verify computations

Pt. 11 example

Simulate to verify computations

- Design and draw filter schematicPt. 13 example
- Depending on the type of filter formulae and schematic are different
 - other type other than coupled-lines offers bonus point

- Attention! Filter design can be done only by computation
 - due to high number of parameters (order 5-6, 12-14 parameters) it's not possible to get good results by tuning

n	g _n	Z _o J _n	Z _{oe} [Ω]	Z _{oo} [Ω]
1	1.6703	0.306664	70.04	39-37
2	1.1926	0.111295	56.18	45.05
3	2.3661	0.09351	55.11	45.76
4	0.8419	0.111294	56.18	45.05
5	1.9841	0.306653	70.03	39.37

Simulate to verify filter separately

- Check carefully the passband, and maximum ripple/loss in passband
 - correct passband is significant in project grade
 - eventual uncontrolled losses in passband will lower amplifier gain and gain assignment fulfillment might fail

- Follow lab 3 principles for final tune
 - input lines mainly to change noise, output lines only change gain
- Pt. 14 example

- Implement supplemental design for additional points
 - Proving additional points will require submission of archived ADS project (*.zap)

Laboratorul de microunde si optoelectronica
http://rf-opto.etti.tuiasi.ro
rdamian@etti.tuiasi.ro