Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.1

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: Grupa

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $35.1\Omega + j.59.1\Omega$ and the reference impedance is 75Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0344S + j \cdot 0.0215S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 4.25dB and a isolation equal to 23.5dB. If the input power (50Ω source) is 3.25mW:
 - a) Compute the isolated output power (in dBm and μ W). (1p)
 - b) Design an ideal coupled line coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 57Ω load to a 50Ω feed line at 7.0GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 57Ω resistance we add a 0.37pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 15.30dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.7	7.8	8.3	10.9
Noise Factor [dB]	0.55	0.87	1.06	1.28

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 8.6 GHz are as follows:

S_{11}		S	S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	
0.662	-158.8°	0.070	5.4°	2.576	33.6°	0.516	-101.4°	

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.2

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. Compute the normalized admittance if the impedance is $54.8\Omega + j \cdot 60.4\Omega$ and the reference impedance is 40Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0360S j \cdot 0.0255S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 5.50dB and a isolation equal to 22.8dB. If the input power (50Ω source) is 2.70mW:
 - a) Compute the isolated output power (in dBm and μ W). (1p)
 - b) Design an ideal ring coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 40Ω load to a 50Ω feed line at 7.4GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in parallel with the 40Ω resistance we add a 0.31pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 16.20dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.3	7.0	9.5	11.8
Noise Factor [dB]	0.54	0.88	0.99	1.12

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)

6. The scattering parameters of a transistor at 12.5 GHz are as follows:

	<u> </u>						
S ₁₁		S	12	S_{21}		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	151.5°	0.090	-29.5°	1.737	-16.5°	0.550	-145.0°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.3

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: Grupa_____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $39.8\Omega j.57.3\Omega$ and the reference impedance is 80Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0196S j \cdot 0.0397S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 4.75dB and a isolation equal to 24.0dB. If the input power (50Ω source) is 2.30mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal ring coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 57Ω load to a 50Ω feed line at 8.3GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 57Ω resistance we add a 0.34pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 14.05dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	5.1	8.8	8.5	11.8
Noise Factor [dB]	0.50	0.84	0.99	1.15

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 14.7 GHz are as follows:

S ₁₁		S	12	S_{21}		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.609	123.6°	0.097	-39.6°	1.625	-44.1°	0.557	-165.3°

- a) Prove that the transistor can be conjugately matched (50 Ω) for maximum gain. (0.5p)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.4

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $37.3\Omega + j.59.1\Omega$ and the reference impedance is 35Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0342S + j \cdot 0.0247S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 5.80dB and a isolation equal to 21.6dB. If the input power (50Ω source) is 3.25mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal ring coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 27Ω load to a 50Ω feed line at 8.0GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 27Ω resistance we add a 1.24nH inductor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 15.30dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.4	8.1	8.8	11.6
Noise Factor [dB]	0.64	0.83	0.98	1.27

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 12.7 GHz are as follows:

S_{11}		S	12	S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	148.9°	0.090	-30.5°	1.726	-19.1°	0.550	-147.0°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.5

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $47.4\Omega j.34.1\Omega$ and the reference impedance is 85Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0142S + j \cdot 0.0265S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 6.60dB and a isolation equal to 20.0dB. If the input power (50Ω source) is 2.30mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal coupled line coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 31Ω load to a 50Ω feed line at 8.5GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 31Ω resistance we add a 0.41pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 16.75dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.7	7.4	9.5	10.4
Noise Factor [dB]	0.59	0.70	1.03	1.19

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 13.6 GHz are as follows:

S_{11}		S	12	S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.634	137.2°	0.090	-33.2°	1.675	-30.2°	0.550	-155.4°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.6

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $42.8\Omega + j \cdot 30.4\Omega$ and the reference impedance is 75Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0200S + j \cdot 0.0115S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 6.70dB and a directivity equal to 22.7dB. If the input power (50Ω source) is 2.60mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal coupled line coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 27Ω load to a 50Ω feed line at 6.5GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in parallel with the 27Ω resistance we add a 0.48 pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 15.35dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.2	8.6	8.5	10.7
Noise Factor [dB]	0.68	0.84	1.09	1.21

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 14.1 GHz are as follows:

S_{11}		S	S_{12}		S_{21}		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	
0.627	130.8°	0.091	-34.8°	1.648	-36.3°	0.551	-159.9°	

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.7

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: Grupa

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $51.9\Omega j.49.5\Omega$ and the reference impedance is 30Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0327S + j \cdot 0.0259S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 5.00dB and a isolation equal to 24.0dB. If the input power (50Ω source) is 1.30mW:
 - a) Compute the isolated output power (in dBm and μ W). (1p)
 - b) Design an ideal ring coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 31Ω load to a 50Ω feed line at 9.3GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in parallel with the 31Ω resistance we add a 0.26pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 15.65dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	5.7	7.3	9.8	10.6
Noise Factor [dB]	0.53	0.71	0.97	1.29

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 8.9 GHz are as follows:

,	S_{11}	S_{12}		S_{21}		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.653	-162.7°	0.070	3.6°	2.525	29.4°	0.519	-107.1°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.8

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $62.2\Omega j.51.2\Omega$ and the reference impedance is 80Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0325S j \cdot 0.0195S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 6.95dB and a directivity equal to 21.3dB. If the input power (50Ω source) is 2.15mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal coupled line coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 41Ω load to a 50Ω feed line at 8.1GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 41Ω resistance we add a 0.88nH inductor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 16.10dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.5	7.5	9.1	10.2
Noise Factor [dB]	0.51	0.83	1.03	1.17

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 10.5 GHz are as follows:

S	S_{11}	S	S_{12}		21	S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.605	175.5°	0.080	-3.5°	2.318	8.5°	0.520	-113.5°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.9

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $40.8\Omega + j \cdot 68.5\Omega$ and the reference impedance is 70Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0236S + j \cdot 0.0112S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 4.85dB and a isolation equal to 22.0dB. If the input power (50Ω source) is 3.25mW:
 - a) Compute the isolated output power (in dBm and μ W). (1p)
 - b) Design an ideal coupled line coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 56Ω load to a 50Ω feed line at 9.8GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 56Ω resistance we add a 1.05nH inductor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 15.35dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	5.4	8.1	9.9	10.3
Noise Factor [dB]	0.64	0.87	1.01	1.18

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 8.8 GHz are as follows:

S	S_{11}	S	12	S	21	S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.656	-161.4°	0.070	4.2°	2.542	30.8°	0.518	-105.2°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.10

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $56.3\Omega + j \cdot 57.9\Omega$ and the reference impedance is 80Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0216S + j \cdot 0.0204S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 4.05dB and a directivity equal to 20.7dB. If the input power (50Ω source) is 2.10mW:
 - a) Compute the isolated output power (in dBm and μ W). (1p)
 - b) Design an ideal coupled line coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 74Ω load to a 50Ω feed line at 8.8GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in parallel with the 74 Ω resistance we add a 0.30pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 16.35dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.0	8.7	9.3	10.8
Noise Factor [dB]	0.57	0.77	0.98	1.24

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 14.3 GHz are as follows:

S ₁₁		S_{12}		S_{21}		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.621	128.4°	0.093	-36.4°	1.641	-38.9°	0.553	-161.7°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.11

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. Compute the normalized admittance if the impedance is $43.8\Omega + j.55.5\Omega$ and the reference impedance is 45Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0297S + j \cdot 0.0108S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 6.75dB and a isolation equal to 22.8dB. If the input power (50Ω source) is 3.60mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal quadrature coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 54Ω load to a 50Ω feed line at 7.7GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 54Ω resistance we add a 0.49 pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 15.05dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.6	7.5	8.1	11.7
Noise Factor [dB]	0.50	0.88	1.01	1.15

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)

6. The scattering parameters of a transistor at 13.9 GHz are as follows:

	$_{o}$						
S ₁₁		S_{12}		S_{21}		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.631	133.3°	0.090	-33.8°	1.658	-33.8°	0.550	-158.1°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.12

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $41.7\Omega + j \cdot 61.5\Omega$ and the reference impedance is 70Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0379S j \cdot 0.0114S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 6.25dB and a directivity equal to 23.7dB. If the input power (50Ω source) is 1.50mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal quadrature coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 51Ω load to a 50Ω feed line at 9.2GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in parallel with the 51Ω resistance we add a 0.80nH inductor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 15.25dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.9	7.7	8.3	10.8
Noise Factor [dB]	0.62	0.88	1.02	1.12

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 14.8 GHz are as follows:

S	S_{11}	S	12	S_{21}		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.606	122.4°	0.098	-40.4°	1.622	-45.4°	0.558	-166.2°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.13

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. Compute the normalized admittance if the impedance is $60.6\Omega j \cdot 60.9\Omega$ and the reference impedance is 60Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0283S + j \cdot 0.0144S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 4.25dB and a isolation equal to 23.5dB. If the input power (50Ω source) is 3.15mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal coupled line coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 29Ω load to a 50Ω feed line at 8.4GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 29Ω resistance we add a 0.60nH inductor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 17.50dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.1	8.8	9.8	11.6
Noise Factor [dB]	0.52	0.85	1.06	1.10

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)

6. The scattering parameters of a transistor at 12.9 GHz are as follows:

	<u> </u>						
S_{11}		S	12	S	21		22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	146.3°	0.090	-31.5°	1.715	-21.7°	0.550	-149.0°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.14

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $53.9\Omega j \cdot 68.9\Omega$ and the reference impedance is 100Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0337S j \cdot 0.0358S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 5.85dB and a isolation equal to 22.8dB. If the input power (50Ω source) is 2.90mW:
 - a) Compute the isolated output power (in dBm and μ W). (1p)
 - b) Design an ideal quadrature coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 29Ω load to a 50Ω feed line at 7.1GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 29Ω resistance we add a 0.46pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 17.00dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.5	8.8	9.7	10.6
Noise Factor [dB]	0.65	0.73	1.05	1.14

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 13.3 GHz are as follows:

S_{11}		S	12	S_{21}		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.637	141.1°	0.090	-32.6°	1.692	-26.6°	0.550	-152.7°

- a) Prove that the transistor can be conjugately matched (50 Ω) for maximum gain. (0.5p)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.15

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $54.6\Omega + j \cdot 52.3\Omega$ and the reference impedance is 100Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0240S + j \cdot 0.0187S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 6.65dB and a isolation equal to 21.1dB. If the input power (50Ω source) is 2.05mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal coupled line coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 59Ω load to a 50Ω feed line at 9.0GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in parallel with the 59Ω resistance we add a 0.91nH inductor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 16.25dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.7	8.9	9.5	10.0
Noise Factor [dB]	0.66	0.75	0.99	1.13

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 14.0 GHz are as follows:

S_{11}		S	12	S_{21}		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.630	132.0°	0.090	-34.0°	1.652	-35.0°	0.550	-159.0°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.16

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $68.4\Omega j \cdot 60.3\Omega$ and the reference impedance is 70Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0210S + j \cdot 0.0388S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 4.45dB and a directivity equal to 21.0dB. If the input power (50Ω source) is 2.05mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal coupled line coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 72Ω load to a 50Ω feed line at 9.0GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 72 Ω resistance we add a 0.67nH inductor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 15.80dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	5.2	7.7	8.9	11.0
Noise Factor [dB]	0.60	0.77	1.01	1.12

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 10.7 GHz are as follows:

S_{11}		S	12	S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.599	172.5°	0.080	-4.5°	2.294	5.9°	0.520	-115.3°

- a) Prove that the transistor can be conjugately matched (50 Ω) for maximum gain. (0.5p)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.17

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $41.2\Omega + j \cdot 37.4\Omega$ and the reference impedance is 90Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0195S + j \cdot 0.0299S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 6.65dB and a directivity equal to 22.3dB. If the input power (50Ω source) is 3.10mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal quadrature coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 50Ω load to a 50Ω feed line at 9.6GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 50Ω resistance we add a 0.78nH inductor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 14.95dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	5.2	8.7	8.0	11.0
Noise Factor [dB]	0.53	0.75	1.05	1.22

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 14.9 GHz are as follows:

S_{11}		S	12	S_{21}		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.603	121.2°	0.099	-41.2°	1.618	-46.7°	0.559	-167.1°

- a) Prove that the transistor can be conjugately matched (50 Ω) for maximum gain. (0.5p)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.18

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $69.2\Omega j.53.4\Omega$ and the reference impedance is 30Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0133S j \cdot 0.0316S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 6.50dB and a directivity equal to 24.6dB. If the input power (50Ω source) is 3.45mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal ring coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 71Ω load to a 50Ω feed line at 9.9GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in parallel with the 71Ω resistance we add a 0.42pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 14.75dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	5.9	8.6	8.8	11.1
Noise Factor [dB]	0.55	0.86	0.90	1.13

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 10.4 GHz are as follows:

S_{11}		S	12	S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.608	177.0°	0.080	-3.0°	2.330	9.8°	0.520	-112.6°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.19

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $31.2\Omega j.59.0\Omega$ and the reference impedance is 70Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0249S + j \cdot 0.0350S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 4.65dB and a directivity equal to 21.7dB. If the input power (50Ω source) is 3.30mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal ring coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 74Ω load to a 50Ω feed line at 8.7GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 74 Ω resistance we add a 0.73nH inductor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 16.30dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	5.0	8.2	9.4	11.9
Noise Factor [dB]	0.66	0.78	1.02	1.19

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 10.0 GHz are as follows:

						61						
S ₁₁		S	12	\mathbf{S}_{21}		S_{22}						
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.					
0.620	-177.0°	0.080	-1.0°	2.378	15.0°	0.520	-109.0°					

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.20

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: Grupa_____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $56.6\Omega + j \cdot 36.8\Omega$ and the reference impedance is 50Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0105S j \cdot 0.0151S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 6.60dB and a directivity equal to 24.6dB. If the input power (50Ω source) is 3.90mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal coupled line coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 65Ω load to a 50Ω feed line at 9.0GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 65Ω resistance we add a 0.30pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 16.85dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.1	7.2	9.9	11.4
Noise Factor [dB]	0.57	0.70	0.94	1.19

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 13.1 GHz are as follows:

S_{11}		S	12	S_{21}		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.639	143.7°	0.090	-32.2°	1.703	-24.2°	0.550	-150.9°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.21

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $43.6\Omega + j \cdot 37.4\Omega$ and the reference impedance is 80Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0336S + j \cdot 0.0168S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 4.25dB and a directivity equal to 20.7dB. If the input power (50Ω source) is 1.85mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal ring coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 54Ω load to a 50Ω feed line at 6.6GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 54Ω resistance we add a 0.37pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 16.05dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.1	8.5	9.4	11.7
Noise Factor [dB]	0.67	0.76	0.97	1.20

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 9.2 GHz are as follows:

S_{11}		S	12	S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.644	-166.6°	0.072	2.2°	2.482	25.4°	0.520	-109.0°

- a) Prove that the transistor can be conjugately matched (50 Ω) for maximum gain. (0.5p)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.22

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $44.4\Omega j.56.6\Omega$ and the reference impedance is 85Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0184S j \cdot 0.0361S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 4.85dB and a isolation equal to 21.5dB. If the input power (50Ω source) is 4.05mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal quadrature coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 67Ω load to a 50Ω feed line at 7.5GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 67Ω resistance we add a 1.05nH inductor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 14.55dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	5.1	8.7	9.4	11.6
Noise Factor [dB]	0.51	0.80	0.94	1.21

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 9.5 GHz are as follows:

S_{11}		S	12	S_{21}		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.635	-170.5°	0.075	1.0°	2.443	21.5°	0.520	-109.0°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.23

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $30.7\Omega + j.53.0\Omega$ and the reference impedance is 40Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0315S j \cdot 0.0161S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 4.00dB and a isolation equal to 24.5dB. If the input power (50Ω source) is 2.80mW:
 - a) Compute the isolated output power (in dBm and μ W). (1p)
 - b) Design an ideal coupled line coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 46Ω load to a 50Ω feed line at 9.3GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 46Ω resistance we add a 0.30pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 15.10dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	5.6	8.5	9.1	10.3
Noise Factor [dB]	0.64	0.82	0.98	1.19

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 13.7 GHz are as follows:

S_{11}		S	12	S_{21}		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.633	135.9°	0.090	-33.4°	1.669	-31.4°	0.550	-156.3°

- a) Prove that the transistor can be conjugately matched (50 Ω) for maximum gain. (0.5p)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.24

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $49.9\Omega + j \cdot 60.2\Omega$ and the reference impedance is 50Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0327S j \cdot 0.0257S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 4.00dB and a isolation equal to 21.0dB. If the input power (50Ω source) is 2.70mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal coupled line coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 70Ω load to a 50Ω feed line at 7.7GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in parallel with the 70Ω resistance we add a 1.39nH inductor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 15.60dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.0	8.6	8.5	11.3
Noise Factor [dB]	0.54	0.72	0.94	1.15

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 15.0 GHz are as follows:

S_{11}		S	12	S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.600	120.0°	0.100	-42.0°	1.614	-48.0°	0.560	-168.0°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.25

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $35.4\Omega + j.58.9\Omega$ and the reference impedance is 30Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0342S + j \cdot 0.0358S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 6.20dB and a isolation equal to 22.9dB. If the input power (50Ω source) is 1.75mW:
 - a) Compute the isolated output power (in dBm and μ W). (1p)
 - b) Design an ideal quadrature coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 28Ω load to a 50Ω feed line at 7.5GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 28Ω resistance we add a 1.44nH inductor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 14.65dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	5.1	8.2	8.6	11.9
Noise Factor [dB]	0.64	0.81	0.98	1.25

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 9.9 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.623	-175.7°	0.079	-0.6°	2.391	16.3°	0.520	-109.0°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.26

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $33.8\Omega j \cdot 69.6\Omega$ and the reference impedance is 85Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0352S j \cdot 0.0178S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 6.65dB and a isolation equal to 20.7dB. If the input power (50Ω source) is 3.80mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal ring coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 27Ω load to a 50Ω feed line at 9.3GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in parallel with the 27Ω resistance we add a 0.43pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 15.95dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.7	8.1	8.9	11.6
Noise Factor [dB]	0.62	0.83	1.03	1.23

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 10.2 GHz are as follows:

S_{11}		S	S_{12}		S_{21}		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	
0.614	180.0°	0.080	-2.0°	2.354	12.4°	0.520	-110.8°	

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.27

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $31.4\Omega + j.55.9\Omega$ and the reference impedance is 70Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to 0.0289S + j·0.0158S. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 5.75dB and a directivity equal to 20.1dB. If the input power (50Ω source) is 4.00mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal ring coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 57Ω load to a 50Ω feed line at 6.6GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in parallel with the 57Ω resistance we add a 0.79 pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 15.15dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	5.2	7.1	8.8	11.6
Noise Factor [dB]	0.53	0.88	1.00	1.27

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 9.6 GHz are as follows:

S_{11}		S	S_{12}		S_{21}		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	
0.632	-171.8°	0.076	0.6°	2.430	20.2°	0.520	-109.0°	

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.28

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. Compute the normalized admittance if the impedance is $31.9\Omega j.49.7\Omega$ and the reference impedance is 70Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0260S + j \cdot 0.0291S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 4.35dB and a directivity equal to 23.6dB. If the input power (50Ω source) is 3.25mW:
 - a) Compute the isolated output power (in dBm and μ W). (1p)
 - b) Design an ideal ring coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 51Ω load to a 50Ω feed line at 7.4GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in parallel with the 51Ω resistance we add a 1.11nH inductor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 14.50dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	5.8	7.7	8.6	10.3
Noise Factor [dB]	0.66	0.87	1.05	1.23

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)

6. The scattering parameters of a transistor at 13.8 GHz are as follows:

	-						
S ₁₁		S	12	S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.632	134.6°	0.090	-33.6°	1.663	-32.6°	0.550	-157.2°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.29

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: Grupa

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $49.2\Omega j.38.3\Omega$ and the reference impedance is 60Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0305S + j \cdot 0.0172S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 5.75dB and a directivity equal to 22.1dB. If the input power (50Ω source) is 1.15mW:
 - a) Compute the isolated output power (in dBm and μ W). (1p)
 - b) Design an ideal ring coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 53Ω load to a 50Ω feed line at 8.0GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in parallel with the 53Ω resistance we add a 0.40pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 14.45dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	5.2	8.2	8.3	11.2
Noise Factor [dB]	0.57	0.73	1.08	1.15

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 13.0 GHz are as follows:

S_{11}		S	S_{12}		S_{21}		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	
0.640	145.0°	0.090	-32.0°	1.709	-23.0°	0.550	-150.0°	

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.30

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $35.7\Omega + j \cdot 66.3\Omega$ and the reference impedance is 85Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0133S j \cdot 0.0223S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 4.20dB and a isolation equal to 21.5dB. If the input power (50Ω source) is 1.80mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal coupled line coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 46Ω load to a 50Ω feed line at 7.3GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 46Ω resistance we add a 0.32pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 15.80dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	5.5	7.5	9.8	11.9
Noise Factor [dB]	0.64	0.84	0.95	1.25

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 9.8 GHz are as follows:

S_{11}		S_{12}		S_{21}		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.626	-174.4°	0.078	-0.2°	2.404	17.6°	0.520	-109.0°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.31

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. Compute the normalized admittance if the impedance is $51.9\Omega + j \cdot 67.1\Omega$ and the reference impedance is 100Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0114S j \cdot 0.0232S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 6.30dB and a directivity equal to 24.4dB. If the input power (50Ω source) is 3.40mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal quadrature coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 41Ω load to a 50Ω feed line at 9.5GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 41Ω resistance we add a 0.74nH inductor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 16.70dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.8	7.4	9.8	11.8
Noise Factor [dB]	0.63	0.88	0.99	1.26

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)

6. The scattering parameters of a transistor at 12.6 GHz are as follows:

	<u> </u>						
5	S_{11}	S	12	S	21	S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	150.2°	0.090	-30.0°	1.732	-17.8°	0.550	-146.0°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.32

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $62.2\Omega j.58.7\Omega$ and the reference impedance is 60Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to 0.0299S + j·0.0282S. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 6.50dB and a directivity equal to 22.5dB. If the input power (50Ω source) is 1.95mW:
 - a) Compute the isolated output power (in dBm and μ W). (1p)
 - b) Design an ideal coupled line coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 53Ω load to a 50Ω feed line at 7.1GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in parallel with the 53Ω resistance we add a 0.35pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 15.10dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.2	7.6	8.2	11.5
Noise Factor [dB]	0.52	0.89	0.98	1.21

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 13.2 GHz are as follows:

S_{11} S_{12}		12	S_{21}		S_{22}		
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.638	142.4°	0.090	-32.4°	1.698	-25.4°	0.550	-151.8°

- a) Prove that the transistor can be conjugately matched (50Ω) for maximum gain. (0.5p)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.33

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $34.3\Omega j.38.7\Omega$ and the reference impedance is 70Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0388S + j \cdot 0.0238S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 4.35dB and a isolation equal to 24.6dB. If the input power (50Ω source) is 3.05mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal coupled line coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 31Ω load to a 50Ω feed line at 9.0GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in parallel with the 31Ω resistance we add a 0.62nH inductor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 16.70dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.0	8.1	9.9	11.1
Noise Factor [dB]	0.53	0.77	0.92	1.27

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 9.4 GHz are as follows:

	S_{11} S_{12}		12	S ₂₁		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.638	-169.2°	0.074	1.4°	2.456	22.8°	0.520	-109.0°

- a) Prove that the transistor can be conjugately matched (50Ω) for maximum gain. (0.5p)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.34

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $33.0\Omega j.54.7\Omega$ and the reference impedance is 80Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0206S j \cdot 0.0147S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 6.80dB and a directivity equal to 23.5dB. If the input power (50Ω source) is 1.55mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal quadrature coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 58Ω load to a 50Ω feed line at 7.6GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in series with the 58Ω resistance we add a 0.33pF capacitor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 16.65dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.7	8.4	9.8	10.2
Noise Factor [dB]	0.69	0.77	1.07	1.29

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 9.0 GHz are as follows:

5	S ₁₁ S ₁₂		12	S ₂₁		S ₂₂	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.650	-164.0°	0.070	3.0°	2.508	28.0°	0.520	-109.0°

- a) Prove that the transistor can be conjugately matched (50Ω) for maximum gain. (0.5p)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)

Faculty / Department: Electronics, Telecommunications and Information Technology

Domain: Telecommunication Technologies and Systems

Course: MDCR - EDOS412T

Enrollment Year: ___4____ / 2018

SUBJECT No.35

Time allowed: 2 hours; All materials/equipments authorized

Instructor, sl. Radu Damian Student: _____ Grupa____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. Compute the normalized admittance if the impedance is $55.9\Omega + j \cdot 61.3\Omega$ and the reference impedance is 100Ω . (1p)
- 2. Outline a Smith Chart (only the external circle and the complex plane axes) and plot the point corresponding to an admittance equal to $0.0275S j \cdot 0.0313S$. (1p)
- 3. A lossless coupler designed to work on 50Ω terminations has a coupling factor equal to 4.65dB and a isolation equal to 20.2dB. If the input power (50Ω source) is 2.50mW:
 - a) Compute the isolated output power (in dBm and μW). (1p)
 - b) Design an ideal quadrature coupler for the specified coupling factor. (1p)
- 4. A quarter wave transformer is designed to match a 45Ω load to a 50Ω feed line at 7.6GHz.
 - a) Design the quarter wave transformer. (0.5p)
 - b) If at the load in parallel with the 45Ω resistance we add a 0.73nH inductor compute the resulting input impedance. (1.5p)
- 5. In order to obtain an 15.40dB gain (minimum) amplifier you must connect in series two devices. You have available the four devices in the following table.

Device	1	2	3	4
Gain [dB]	6.8	7.6	8.2	10.5
Noise Factor [dB]	0.56	0.81	0.93	1.22

- a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
- b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
- 6. The scattering parameters of a transistor at 9.3 GHz are as follows:

	01						
	S_{11}	S	12	S	21	S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.641	-167.9°	0.073	1.8°	2.469	24.1°	0.520	-109.0°

- a) Prove that the transistor <u>can be</u> conjugately matched (50Ω) for maximum gain. (**0.5p**)
- b) Which is the transducer power gain we obtain in this case (in dB)? (0.5p)
- b) Compute the input and output reflection coefficients (towards the source and load) needed for conjugate match. (1p)
- c) Design the match with single-stub matching sections (any solution). (1p)
- d) If for better gain you must add another transistor of the same type, design the matching section between the two amplifier stages (any solution). (1p)
- e) In the d) case, which of all solutions for the interstage matching section requires the least substrate area (assume T shape layout)? Explain your choice. (2p)