UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 1

Time allowed: $\mathbf{2}$ hours; All materials/equipments authorized
Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 37Ω resistor paralel with a 1.15 nH inductor, at 7.1 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.880+j \cdot 1.020$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 26Ω load to a 50Ω source at 7.3 GHz . Which is the impedance seen by the source at 2.9 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 7$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=1.35 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=2.65 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 8.3 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 12.3 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	154.1°	0	0°	1.749	-13.9°	0.550	-143.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $135 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $\mathrm{S}_{12}=0.090 \angle-28.5^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad , Examination Session \qquad January \qquad / __2019

SUBJECTNo. 2
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 50Ω resistor series with a 0.78 nH inductor, at 8.5 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.730-\mathrm{j} \cdot 0.990$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 50Ω load to a 50Ω source at 9.0 GHz . Which is the impedance seen by the source at 3.6 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 10$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=1.30 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=3.20 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 12.4 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 9.7 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.692	-167.8°	0	0°	1.966	21.2°	0.560	-118.3°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1} \mathbf{p}$)
d) For a $135 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $S_{12}=0.080 \angle-13.9^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad , Examination Session \qquad January \qquad / __2019

SUBJECT No. 3
 Time allowed: $\mathbf{2}$ hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 25Ω resistor series with a 1.00 nH inductor, at 9.4 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.895-\mathrm{j} \cdot 0.750$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 41Ω load to a 50Ω source at 6.7 GHz . Which is the impedance seen by the source at 3.9 GHz . (2p)
4. A $\lambda / 9$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.50 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=1.95 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 14.0 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 14.7 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.688	103.7°	0	0°	1.686	-27.7°	0.298	153.2°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $105 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $\mathrm{S}_{12}=0.137 \angle 4.5^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad , Examination Session \qquad January \qquad / __2019

SUBJECT No. 4
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 63Ω resistor paralel with a 1.13 nH inductor, at 9.5 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.025-\mathrm{j} \cdot 1.000$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 37Ω load to a 50Ω source at 7.0 GHz . Which is the impedance seen by the source at 4.0 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 7$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=1.90 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=2.80 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 12.9 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 11.5 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.660	173.0°	0	0°	1.810	-3.0°	0.555	-135.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $130 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $\mathrm{S}_{12}=0.090 \angle-24.0^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad , Examination Session \qquad January \qquad / __2019

SUBJECTNo. 5
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 61Ω resistor series with a 1.32 nH inductor, at 6.5 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.290+\mathrm{j} \cdot 0.970$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 35Ω load to a 50Ω source at 7.1 GHz . Which is the impedance seen by the source at 2.2 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 13$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.80 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=4.85 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 14.4 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 10.8 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.680	-172.0°	0	0°	1.871	6.6°	0.560	-128.2°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? (1p)
d) For a $140 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $\mathrm{S}_{12}=0.088 \angle-20.0^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 6

Time allowed: 2 hours; All materials/equipments authorized
Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 25Ω resistor paralel with a 0.56 pF capacitor, at 7.2 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.740-\mathrm{j} \cdot 1.055$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 50Ω load to a 50Ω source at 7.7 GHz . Which is the impedance seen by the source at 2.4 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 6$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.45 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=3.65 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 7.6 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 11.0 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.680	-172.0°	0	0°	1.854	4.0°	0.560	-130.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1} \mathbf{p}$)
d) For a $75 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $S_{12}=0.090 \angle-21.0^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad , Examination Session \qquad January \qquad / __2019

SUBJECT No. 7
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 58Ω resistor paralel with a 0.26 pF capacitor, at 9.6 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.725-\mathrm{j} \cdot 0.800$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 43Ω load to a 50Ω source at 9.5 GHz . Which is the impedance seen by the source at 2.0 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 14$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=1.55 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=1.80 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 14.6 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 12.0 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	158.0°	0	0°	1.766	-10.0°	0.550	-140.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $110 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $\mathrm{S}_{12}=0.090 \angle-27.0^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad , Examination Session \qquad January \qquad / __2019

SUBJECT No. 8

Time allowed: 2 hours; All materials/equipments authorized
Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 57Ω resistor paralel with a 0.55 nH inductor, at 8.6 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.190+\mathrm{j} \cdot 1.025$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 72Ω load to a 50Ω source at 8.8 GHz . Which is the impedance seen by the source at 3.8 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 14$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.15 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=2.00 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 10.1 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 10.7 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.680	-172.0°	0	0°	1.880	7.9°	0.560	-127.3°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $120 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $\mathrm{S}_{12}=0.087 \angle-19.5^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 9

Time allowed: 2 hours; All materials/equipments authorized
Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 68Ω resistor series with a 0.49 nH inductor, at 8.3 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.815-\mathrm{j} \cdot 1.280$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 63Ω load to a 50Ω source at 7.1 GHz . Which is the impedance seen by the source at 2.7 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 9$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.75 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=4.60 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 9.3 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 12.7 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	148.9°	0	0°	1.726	-19.1°	0.550	-147.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $125 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $\mathrm{S}_{12}=0.090 \angle-30.5^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 10
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 55Ω resistor paralel with a 0.71 nH inductor, at 8.5 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.935-\mathrm{j} \cdot 0.740$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 48Ω load to a 50Ω source at 9.5 GHz . Which is the impedance seen by the source at 3.5 GHz . (2p)
4. A $\lambda / 9$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.45 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=1.65 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 12.8 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 10.4 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.680	-172.0°	0	0°	1.906	11.8°	0.560	-124.6°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $120 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $S_{12}=0.084 \angle-18.0^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 11
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 50Ω resistor series with a 0.99 nH inductor, at 7.0 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.925+j \cdot 1.175$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 27Ω load to a 50Ω source at 10.0 GHz . Which is the impedance seen by the source at 4.1 GHz . (2p)
4. A $\lambda / 7$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.60 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=2.30 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 11.2 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 14.4 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.676	106.4°	0	0°	1.722	-24.4°	0.286	157.4°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $55 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). (1p)
e) If however you know the real value of $S_{12}=0.134 \angle 6.0^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 12
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 32Ω resistor series with a 0.38 pF capacitor, at 8.9 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.025-\mathrm{j} \cdot 0.925$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 57Ω load to a 50Ω source at 8.8 GHz . Which is the impedance seen by the source at 3.4 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 13$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=1.60 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=4.65 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 7.3 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 10.6 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.680	-172.0°	0	0°	1.888	9.2°	0.560	-126.4°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $50 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $S_{12}=0.086 \angle-19.0^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad , Examination Session \qquad January \qquad / __2019

SUBJECT No. 13
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 67Ω resistor series with a 0.25 pF capacitor, at 8.9 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.720+\mathrm{j} \cdot 1.185$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 47Ω load to a 50Ω source at 9.0 GHz . Which is the impedance seen by the source at 2.9 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 8$ section of an open-circuited transmission line, with parameters (per unit length) $\mathrm{R}=\mathrm{G}=0$, $\mathrm{L}=2.40 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=1.85 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 11.4 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 9.9 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.684	-170.6°	0	0°	1.948	18.4°	0.560	-120.1°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $70 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $S_{12}=0.080 \angle-15.3^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 14
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 57Ω resistor series with a 0.54 nH inductor, at 9.7 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.050+j \cdot 1.100$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 62Ω load to a 50Ω source at 7.0 GHz . Which is the impedance seen by the source at 3.7 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 14$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=1.45 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=4.30 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 11.2 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 13.0 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	145.0°	0	0°	1.709	-23.0°	0.550	-150.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $125 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $\mathrm{S}_{12}=0.090 \angle-32.0^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 15
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 56Ω resistor series with a 0.37 pF capacitor, at 7.0 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.755+j \cdot 1.020$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 53Ω load to a 50Ω source at 9.9 GHz . Which is the impedance seen by the source at 4.0 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 10$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.75 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=3.55 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 13.8 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 9.8 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.688	-169.2°	0	0°	1.957	19.8°	0.560	-119.2°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $55 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). (1p)
e) If however you know the real value of $S_{12}=0.080 \angle-14.6^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 16
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 48Ω resistor paralel with a 0.30 pF capacitor, at 7.5 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.265-\mathrm{j} \cdot 1.250$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 33Ω load to a 50Ω source at 8.1 GHz . Which is the impedance seen by the source at 4.3 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 11$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=1.05 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=2.75 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 13.1 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 14.6 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.684	104.6°	0	0°	1.698	-26.6°	0.294	154.6°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1} \mathbf{p}$)
d) For a $145 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $S_{12}=0.136 \angle 5.0^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 17
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 59Ω resistor series with a 1.16 nH inductor, at 9.5 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.070-\mathrm{j} \cdot 0.865$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 71Ω load to a 50Ω source at 7.3 GHz . Which is the impedance seen by the source at 2.8 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 14$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=1.60 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=1.40 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 14.2 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 10.5 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.680	-172.0°	0	0°	1.897	10.5°	0.560	-125.5°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $80 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). (1p)
e) If however you know the real value of $S_{12}=0.085 \angle-18.5^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 18
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 28Ω resistor series with a 1.14 nH inductor, at 7.5 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.865+j \cdot 1.135$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 27Ω load to a 50Ω source at 7.4 GHz . Which is the impedance seen by the source at 2.8 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 8$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.50 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=4.85 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 10.0 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 14.8 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.692	102.8°	0	0°	1.674	-28.8°	0.302	151.8°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $120 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $S_{12}=0.138 \angle 4.0^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 19
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 35Ω resistor paralel with a 0.60 nH inductor, at 8.2 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.235-\mathrm{j} \cdot 0.760$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 26Ω load to a 50Ω source at 8.1 GHz . Which is the impedance seen by the source at 2.9 GHz . (2p)
4. A $\lambda / 9$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.90 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=2.90 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 14.8 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 12.9 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	146.3°	0	0°	1.715	-21.7°	0.550	-149.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $70 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $S_{12}=0.090 \angle-31.5^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 20
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 68Ω resistor paralel with a 0.51 nH inductor, at 8.7 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.025+\mathrm{j} \cdot 1.075$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 46Ω load to a 50Ω source at 9.7 GHz . Which is the impedance seen by the source at 3.7 GHz . (2p)
4. A $\lambda / 12$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.25 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=4.70 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 14.7 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 14.5 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.680	105.5°	0	0°	1.710	-25.5°	0.290	156.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $75 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). (1p)
e) If however you know the real value of $S_{12}=0.135 \angle 5.5^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 21
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 31Ω resistor series with a 1.09 nH inductor, at 8.4 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.005-\mathrm{j} \cdot 0.820$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 57Ω load to a 50Ω source at 8.8 GHz . Which is the impedance seen by the source at 2.5 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 7$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.95 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=4.90 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 13.7 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 11.2 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.672	-178.0°	0	0°	1.836	1.2°	0.558	-132.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $100 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $\mathrm{S}_{12}=0.090 \angle-22.2^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 22
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 56Ω resistor series with a 0.54 nH inductor, at 9.4 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.180+\mathrm{j} \cdot 0.920$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 34Ω load to a 50Ω source at 7.7 GHz . Which is the impedance seen by the source at 3.2 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 7$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.70 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=1.60 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 9.0 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 11.1 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.676	-175.0°	0	0°	1.845	2.6°	0.559	-131.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $50 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). (1p)
e) If however you know the real value of $S_{12}=0.090 \angle-21.6^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 23
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 39Ω resistor paralel with a 0.66 nH inductor, at 8.9 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.825+j \cdot 1.075$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 68Ω load to a 50Ω source at 9.7 GHz . Which is the impedance seen by the source at 3.1 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 14$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.55 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=3.15 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 11.8 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 10.9 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.680	-172.0°	0	0°	1.863	5.3°	0.560	-129.1°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $140 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $S_{12}=0.089 \angle-20.5^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 24
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 40Ω resistor paralel with a 1.19 nH inductor, at 6.9 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.765+\mathrm{j} \cdot 0.710$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 46Ω load to a 50Ω source at 9.4 GHz . Which is the impedance seen by the source at 2.1 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 9$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.15 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=2.75 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 8.7 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 11.3 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.668	179.0°	0	0°	1.828	-0.2°	0.557	-133.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $85 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). (1p)
e) If however you know the real value of $\mathrm{S}_{12}=0.090 \angle-22.8^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 25
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 61Ω resistor series with a 0.25 pF capacitor, at 9.2 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.075-\mathrm{j} \cdot 0.760$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 49Ω load to a 50Ω source at 9.0 GHz . Which is the impedance seen by the source at 4.3 GHz . (2p)
4. A $\lambda / 8$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.50 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=4.00 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 9.6 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 9.6 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.696	-166.4°	0	0°	1.974	22.6°	0.560	-117.4°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $80 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). (1p)
e) If however you know the real value of $S_{12}=0.080 \angle-13.2^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 26
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 44Ω resistor series with a 1.24 nH inductor, at 8.4 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.175-\mathrm{j} \cdot 0.875$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 48Ω load to a 50Ω source at 7.8 GHz . Which is the impedance seen by the source at 3.1 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 9$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=1.55 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=2.50 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 13.5 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 12.6 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	150.2°	0	0°	1.732	-17.8°	0.550	-146.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $120 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $\mathrm{S}_{12}=0.090 \angle-30.0^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 27
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 72Ω resistor paralel with a 0.83 nH inductor, at 8.4 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.745+\mathrm{j} \cdot 0.985$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 74Ω load to a 50Ω source at 9.8 GHz . Which is the impedance seen by the source at 3.8 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 12$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=1.20 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=3.65 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 8.2 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 14.2 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.668	108.2°	0	0°	1.746	-22.2°	0.278	160.2°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $100 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $S_{12}=0.132 \angle 7.0^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 28
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 55Ω resistor paralel with a 1.62 nH inductor, at 7.0 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.860+\mathrm{j} \cdot 1.220$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 47Ω load to a 50Ω source at 8.2 GHz . Which is the impedance seen by the source at 3.1 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 8$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=1.55 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=4.20 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 7.7 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 15.0 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.700	101.0°	0	0°	1.650	-31.0°	0.310	149.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $85 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). (1p)
e) If however you know the real value of $S_{12}=0.140 \angle 3.0^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 29
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 32Ω resistor paralel with a 1.31 nH inductor, at 6.5 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.020-\mathrm{j} \cdot 0.765$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 59Ω load to a 50Ω source at 6.6 GHz . Which is the impedance seen by the source at 4.0 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 7$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.20 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=4.70 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 10.1 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 11.9 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.644	161.0°	0	0°	1.775	-8.6°	0.551	-139.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $100 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $\mathrm{S}_{12}=0.090 \angle-26.4^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No.30
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 52Ω resistor series with a 0.48 pF capacitor, at 7.4 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.900-\mathrm{j} \cdot 0.900$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 36Ω load to a 50Ω source at 9.3 GHz . Which is the impedance seen by the source at 2.8 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 13$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=1.30 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=3.70 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 12.2 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 14.0 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.660	110.0°	0	0°	1.770	-20.0°	0.270	163.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $85 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). (1p)
e) If however you know the real value of $\mathrm{S}_{12}=0.130 \angle 8.0^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No.31
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 36Ω resistor paralel with a 1.16 nH inductor, at 9.9 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.105+j \cdot 0.765$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 72Ω load to a 50Ω source at 9.7 GHz . Which is the impedance seen by the source at 2.2 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 9$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.75 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=3.30 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 11.4 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 10.3 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.680	-172.0°	0	0°	1.914	13.1°	0.560	-123.7°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $145 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $S_{12}=0.083 \angle-17.5^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No.32
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 46Ω resistor paralel with a 0.60 pF capacitor, at 6.7 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.835+\mathrm{j} \cdot 0.830$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 72Ω load to a 50Ω source at 10.0 GHz . Which is the impedance seen by the source at 2.1 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 7$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=1.70 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=1.60 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 9.3 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 12.8 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	147.6°	0	0°	1.720	-20.4°	0.550	-148.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $50 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). (1p)
e) If however you know the real value of $S_{12}=0.090 \angle-31.0^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No.33
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 25Ω resistor series with a 0.30 pF capacitor, at 7.8 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.290-\mathrm{j} \cdot 0.755$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 60Ω load to a 50Ω source at 7.0 GHz . Which is the impedance seen by the source at 2.0 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 7$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=1.95 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=3.10 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 14.9 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 14.3 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.672	107.3°	0	0°	1.734	-23.3°	0.282	158.8°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $55 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). (1p)
e) If however you know the real value of $S_{12}=0.133 \angle 6.5^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No.34
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 58Ω resistor series with a 1.75 nH inductor, at 6.5 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.870+\mathrm{j} \cdot 0.705$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 64Ω load to a 50Ω source at 8.2 GHz . Which is the impedance seen by the source at 2.9 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 6$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.60 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=1.60 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 8.1 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 11.4 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.664	176.0°	0	0°	1.819	-1.6°	0.556	-134.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $60 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). (1p)
e) If however you know the real value of $S_{12}=0.090 \angle-23.4^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No.35
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 66Ω resistor paralel with a 0.54 nH inductor, at 7.8 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.290-\mathrm{j} \cdot 0.765$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 55Ω load to a 50Ω source at 8.5 GHz . Which is the impedance seen by the source at 4.1 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 14$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=1.00 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=3.50 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 8.8 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 12.5 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	151.5°	0	0°	1.737	-16.5°	0.550	-145.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $55 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). (1p)
e) If however you know the real value of $\mathrm{S}_{12}=0.090 \angle-29.5^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No.36
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 42Ω resistor paralel with a 0.94 nH inductor, at 7.1 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.045-\mathrm{j} \cdot 1.195$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 48Ω load to a 50Ω source at 9.3 GHz . Which is the impedance seen by the source at 2.4 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 10$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=1.80 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=2.00 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 7.6 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 13.3 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.637	141.1°	0	0°	1.692	-26.6°	0.550	-152.7°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $65 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). (1p)
e) If however you know the real value of $\mathrm{S}_{12}=0.090 \angle-32.6^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No.37
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 38Ω resistor paralel with a 0.26 pF capacitor, at 9.7 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.935+\mathrm{j} \cdot 1.065$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 73Ω load to a 50Ω source at 9.1 GHz . Which is the impedance seen by the source at 4.4 GHz . (2p)
4. A $\lambda / 9$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.20 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=1.30 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 10.1 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 10.0 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.680	-172.0°	0	0°	1.940	17.0°	0.560	-121.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $70 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $S_{12}=0.080 \angle-16.0^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 38
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 44Ω resistor series with a 0.48 nH inductor, at 8.8 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.885-\mathrm{j} \cdot 0.875$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 57Ω load to a 50Ω source at 7.5 GHz . Which is the impedance seen by the source at 2.2 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 8$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=2.05 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=2.50 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 8.0 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 14.1 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.664	109.1°	0	0°	1.758	-21.1°	0.274	161.6°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $110 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $S_{12}=0.131 \angle 7.5^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No.39
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 72Ω resistor series with a 0.62 pF capacitor, at 9.0 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $1.060+\mathrm{j} \cdot 0.940$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 56Ω load to a 50Ω source at 7.4 GHz . Which is the impedance seen by the source at 3.0 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 11$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=1.00 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=1.20 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 8.5 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 11.7 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.652	167.0°	0	0°	1.792	-5.8°	0.553	-137.0°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. ($\mathbf{0 . 5 p}$)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $105 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $\mathrm{S}_{12}=0.090 \angle-25.2^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI
Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDOS412T
Enrollment Year: \qquad Examination Session \qquad January \qquad / __2019

SUBJECT No. 40
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a load composed from a 26Ω resistor series with a 0.67 nH inductor, at 9.8 GHz , compute the normalized admittance (1p) and the normalized impedance (1p).
2. For a normalized impedance equal to $0.900-\mathrm{j} \cdot 0.990$ compute the corresponding reflection coefficient ($\mathbf{0 . 5 p}$) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point ($\mathbf{0 . 5 p}$).
3. A quarter wave transformer is designed to match a 65Ω load to a 50Ω source at 8.2 GHz . Which is the impedance seen by the source at 3.0 GHz . ($\mathbf{2 p}$)
4. A $\lambda / 12$ section of an open-circuited transmission line, with parameters (per unit length) $R=G=0$, $\mathrm{L}=1.30 \mathrm{nH} / \mathrm{cm}$ and $\mathrm{C}=4.65 \mathrm{pF} / \mathrm{cm}$, is used as a capacitor at 11.7 GHz . Find the value of the capacitance. (2p).
5. The scattering parameters of a transistor at 13.2 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.638	142.4°	0	0°	1.698	-25.4°	0.550	-151.8°

a) Design the match at both input and output with single-stub matching sections (shunt stub solution) which offers maximum gain. (1.5p)
b) Draw the match schematic. (0.5p)
c) Which is the transducer power gain we obtain in this case (in dB)? ($\mathbf{1 p}$)
d) For a $105 \mu \mathrm{~W}$ input signal compute the power of the output signal (both mW and dBm). ($\mathbf{1 p}$)
e) If however you know the real value of $\mathrm{S}_{12}=0.090 \angle-32.4^{\circ}$ check whether the transistor is stable with the match you designed at a). (1p)

