\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 1
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.165+\mathrm{j} \cdot 0.720$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=20.2 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $71.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 60Ω and a physical length which at 9.5 GHz is equal to $3 / 5 \lambda$. The line is loaded with a shunt RC circuit with $\mathrm{R}=45 \Omega$ and $\mathrm{C}=0.364 \mathrm{pF}$.
a) Compute the input impedance at $9.5 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=11 \mathrm{~dB}, \mathrm{G}_{2}=16 \mathrm{~dB}$ and $\mathrm{G}_{3}=10 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.75 \mathrm{~dB}, \mathrm{~F}_{2}=2.15 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.80 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. (1.5p)
5. The scattering parameters of two transistors at 5.3 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.773	-115.9°	4.401	68.3°	0.110	1.5°	0.308	-96.3°
T 2	0.749	-92.0°	2.928	94.5°	0.093	34.3°	0.485	-61.6°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 2
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.820+\mathrm{j} \cdot 1.170$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=21.7 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $127.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 65Ω and a physical length which at 8.3 GHz is equal to $3 / 6 \lambda$. The line is loaded with a shunt RC circuit with $\mathrm{R}=30 \Omega$ and $\mathrm{C}=0.408 \mathrm{pF}$.
a) Compute the input impedance at $8.3 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=13 \mathrm{~dB}, \mathrm{G}_{2}=19 \mathrm{~dB}$ and $\mathrm{G}_{3}=11 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.74 \mathrm{~dB}, \mathrm{~F}_{2}=2.20 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.26 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 7.1 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.642	-162.9°	4.019	29.5°	0.131	-29.5°	0.159	-139.6°
T 2	0.637	-127.9°	2.645	67.6°	0.110	20.5°	0.406	-82.1°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 3
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.220-\mathrm{j} \cdot 0.755$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=21.7 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $143.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 65Ω and a physical length which at 8.4 GHz is equal to $1 / 3 \lambda$. The line is loaded with a series RL circuit with $\mathrm{R}=50 \Omega$ and $\mathrm{L}=0.617 \mathrm{nH}$.
a) Compute the input impedance at $8.4 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=17 \mathrm{~dB}, \mathrm{G}_{2}=15 \mathrm{~dB}$ and $\mathrm{G}_{3}=13 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.44 \mathrm{~dB}, \mathrm{~F}_{2}=2.15 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.11 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 7.0 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.648	-160.2°	4.042	31.5°	0.130	-28.2°	0.167	-136.1°
T 2	0.640	-126.0°	2.660	69.0°	0.110	21.0°	0.410	-81.0°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 4
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.230+\mathrm{j} \cdot 1.105$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=19.4 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $51.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 55Ω and a physical length which at 7.4 GHz is equal to $2 / 6 \lambda$. The line is loaded with a series $R C$ circuit with $R=33 \Omega$ and $C=0.362 \mathrm{pF}$.
a) Compute the input impedance at $7.4 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=17 \mathrm{~dB}, \mathrm{G}_{2}=14 \mathrm{~dB}$ and $\mathrm{G}_{3}=18 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.75 \mathrm{~dB}, \mathrm{~F}_{2}=2.04 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.63 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. (1.5p)
5. The scattering parameters of two transistors at 6.4 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.697	-144.0°	4.196	44.6°	0.124	-17.5°	0.223	-121.5°
T 2	0.676	-114.0°	2.762	78.0°	0.104	25.2°	0.434	-74.4°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 5
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.005-\mathrm{j} \cdot 1.080$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=20.4 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $126.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 70Ω and a physical length which at 8.2 GHz is equal to $5 / 8 \lambda$. The line is loaded with a shunt RL circuit with $\mathrm{R}=52 \Omega$ and $\mathrm{L}=0.612 \mathrm{nH}$.
a) Compute the input impedance at $8.2 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=11 \mathrm{~dB}, \mathrm{G}_{2}=15 \mathrm{~dB}$ and $\mathrm{G}_{3}=17 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.08 \mathrm{~dB}, \mathrm{~F}_{2}=2.46 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.84 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 7.5 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.617	-173.4°	3.927	21.5°	0.134	-34.9°	0.127	-153.7°
T 2	0.625	-135.5°	2.585	62.0°	0.110	18.5°	0.390	-86.5°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 6

Time allowed: 2 hours; All materials/equipments authorized
Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.865+\mathrm{j} \cdot 0.795$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=20.3 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $78.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 90Ω and a physical length which at 9.8 GHz is equal to $2 / 3 \lambda$. The line is loaded with a shunt RL circuit with $\mathrm{R}=35 \Omega$ and $\mathrm{L}=0.733 \mathrm{nH}$.
a) Compute the input impedance at $9.8 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=12 \mathrm{~dB}, \mathrm{G}_{2}=17 \mathrm{~dB}$ and $\mathrm{G}_{3}=18 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.99 \mathrm{~dB}, \mathrm{~F}_{2}=2.18 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.17 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. (1.5p)
5. The scattering parameters of two transistors at 8.2 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.579	166.8°	3.765	7.0°	0.138	-44.6°	0.086	169.5°
T2	0.604	-149.0°	2.482	52.4°	0.110	14.8°	0.362	-94.4°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 7
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.790-\mathrm{j} \cdot 1.270$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=18.0 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $111.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 40Ω and a physical length which at 7.8 GHz is equal to $1 / 3 \lambda$. The line is loaded with a series RL circuit with $\mathrm{R}=67 \Omega$ and $\mathrm{L}=1.088 \mathrm{nH}$.
a) Compute the input impedance at $7.8 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=15 \mathrm{~dB}, \mathrm{G}_{2}=14 \mathrm{~dB}$ and $\mathrm{G}_{3}=11 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.23 \mathrm{~dB}, \mathrm{~F}_{2}=2.01 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.74 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. (1.5p)
5. The scattering parameters of two transistors at 5.7 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.749	-125.8°	4.343	59.8°	0.115	-5.3°	0.281	-105.1°
T 2	0.721	-100.0°	2.872	88.5°	0.097	30.7°	0.465	-66.4°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 8

Time allowed: 2 hours; All materials/equipments authorized
Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.060-\mathrm{j} \cdot 0.990$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=18.9 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $100.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 75Ω and a physical length which at 6.6 GHz is equal to $1 / 3 \lambda$. The line is loaded with a series $R C$ circuit with $R=58 \Omega$ and $C=0.518 \mathrm{pF}$.
a) Compute the input impedance at $6.6 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=12 \mathrm{~dB}, \mathrm{G}_{2}=17 \mathrm{~dB}$ and $\mathrm{G}_{3}=12 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.48 \mathrm{~dB}, \mathrm{~F}_{2}=2.27 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.55 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. (1.5p)
5. The scattering parameters of two transistors at 9.8 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.555	113.5°	3.312	-27.9°	0.145	-68.9°	0.169	59.3°
T 2	0.572	179.0°	2.242	30.0°	0.110	7.6°	0.306	-115.2°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 9
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.125+\mathrm{j} \cdot 0.935$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=17.4 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $148.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 55Ω and a physical length which at 9.6 GHz is equal to $2 / 3 \lambda$. The line is loaded with a series RL circuit with $\mathrm{R}=42 \Omega$ and $\mathrm{L}=1.187 \mathrm{nH}$.
a) Compute the input impedance at $9.6 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=12 \mathrm{~dB}, \mathrm{G}_{2}=12 \mathrm{~dB}$ and $\mathrm{G}_{3}=18 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.84 \mathrm{~dB}, \mathrm{~F}_{2}=2.65 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.45 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. (1.5p)
5. The scattering parameters of two transistors at 8.8 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.559	147.4°	3.619	-6.1°	0.143	-53.7°	0.088	112.1°
T 2	0.586	-161.0°	2.398	44.6°	0.110	11.2°	0.338	-101.6°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 10
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.180-\mathrm{j} \cdot 0.805$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=22.6 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $52.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 60Ω and a physical length which at 7.5 GHz is equal to $2 / 6 \lambda$. The line is loaded with a series RL circuit with $\mathrm{R}=57 \Omega$ and $\mathrm{L}=1.180 \mathrm{nH}$.
a) Compute the input impedance at $7.5 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=10 \mathrm{~dB}, \mathrm{G}_{2}=15 \mathrm{~dB}$ and $\mathrm{G}_{3}=17 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.96 \mathrm{~dB}, \mathrm{~F}_{2}=2.65 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.11 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 5.5 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.761	-120.8°	4.372	64.0°	0.112	-1.9°	0.295	-100.7°
T 2	0.735	-96.0°	2.900	91.5°	0.095	32.5°	0.475	-64.0°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 11
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.235-\mathrm{j} \cdot 1.250$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=19.2 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $68.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 65Ω and a physical length which at 6.6 GHz is equal to $2 / 5 \lambda$. The line is loaded with a shunt RL circuit with $\mathrm{R}=32 \Omega$ and $\mathrm{L}=1.335 \mathrm{nH}$.
a) Compute the input impedance at $6.6 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=14 \mathrm{~dB}, \mathrm{G}_{2}=14 \mathrm{~dB}$ and $\mathrm{G}_{3}=17 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.37 \mathrm{~dB}, \mathrm{~F}_{2}=2.86 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.30 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 8.4 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.572	160.4°	3.716	2.6°	0.140	-47.6°	0.087	150.4°
T2	0.598	-153.0°	2.454	49.8°	0.110	13.6°	0.354	-96.8°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 12
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.020-\mathrm{j} \cdot 0.720$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=17.7 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $146.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 95Ω and a physical length which at 8.7 GHz is equal to $4 / 5 \lambda$. The line is loaded with a shunt RC circuit with $\mathrm{R}=69 \Omega$ and $\mathrm{C}=0.297 \mathrm{pF}$.
a) Compute the input impedance at $8.7 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=13 \mathrm{~dB}, \mathrm{G}_{2}=11 \mathrm{~dB}$ and $\mathrm{G}_{3}=10 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.66 \mathrm{~dB}, \mathrm{~F}_{2}=2.54 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.41 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 8.6 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.566	153.9°	3.668	-1.8°	0.141	-50.7°	0.087	131.2°
T2	0.592	-157.0°	2.426	47.2°	0.110	12.4°	0.346	-99.2°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 13
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.830+\mathrm{j} \cdot 1.195$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=18.8 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $86.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 45Ω and a physical length which at 6.6 GHz is equal to $2 / 3 \lambda$. The line is loaded with a shunt RL circuit with $\mathrm{R}=59 \Omega$ and $\mathrm{L}=0.986 \mathrm{nH}$.
a) Compute the input impedance at $6.6 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=15 \mathrm{~dB}, \mathrm{G}_{2}=15 \mathrm{~dB}$ and $\mathrm{G}_{3}=14 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.04 \mathrm{~dB}, \mathrm{~F}_{2}=2.60 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.08 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 5.1 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.786	-110.9°	4.430	72.6°	0.107	4.9°	0.322	-91.8°
T2	0.763	-88.0°	2.956	97.5°	0.091	36.1°	0.495	-59.2°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 14
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.030-\mathrm{j} \cdot 1.085$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=21.9 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $141.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 35Ω and a physical length which at 8.6 GHz is equal to $2 / 3 \lambda$. The line is loaded with a shunt RC circuit with $\mathrm{R}=64 \Omega$ and $\mathrm{C}=0.615 \mathrm{pF}$.
a) Compute the input impedance at $8.6 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=17 \mathrm{~dB}, \mathrm{G}_{2}=17 \mathrm{~dB}$ and $\mathrm{G}_{3}=16 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.38 \mathrm{~dB}, \mathrm{~F}_{2}=2.74 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.25 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 5.0 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.792	-108.5°	4.445	74.8°	0.105	6.6°	0.329	-89.6°
T2	0.770	-86.0°	2.970	99.0°	0.090	37.0°	0.500	-58.0°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 15
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.245+\mathrm{j} \cdot 1.150$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=21.1 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $91.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 45Ω and a physical length which at 7.1 GHz is equal to $3 / 5 \lambda$. The line is loaded with a shunt RC circuit with $\mathrm{R}=40 \Omega$ and $\mathrm{C}=0.638 \mathrm{pF}$.
a) Compute the input impedance at $7.1 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=16 \mathrm{~dB}, \mathrm{G}_{2}=17 \mathrm{~dB}$ and $\mathrm{G}_{3}=18 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.08 \mathrm{~dB}, \mathrm{~F}_{2}=2.53 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.98 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 9.2 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.553	134.1°	3.506	-14.9°	0.144	-59.7°	0.108	84.5°
T 2	0.578	-169.0°	2.338	39.0°	0.110	9.4°	0.324	-106.8°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 16
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.050+\mathrm{j} \cdot 0.890$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=20.5 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $112.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 40Ω and a physical length which at 7.6 GHz is equal to $2 / 6 \lambda$. The line is loaded with a shunt RL circuit with $\mathrm{R}=70 \Omega$ and $\mathrm{L}=0.961 \mathrm{nH}$.
a) Compute the input impedance at $7.6 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=15 \mathrm{~dB}, \mathrm{G}_{2}=17 \mathrm{~dB}$ and $\mathrm{G}_{3}=11 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.06 \mathrm{~dB}, \mathrm{~F}_{2}=2.04 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.36 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 7.2 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.635	-165.5°	3.996	27.5°	0.131	-30.9°	0.151	-143.1°
T 2	0.634	-129.8°	2.630	66.2°	0.110	20.0°	0.402	-83.2°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 17
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.750+\mathrm{j} \cdot 0.940$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=19.6 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $126.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 35Ω and a physical length which at 6.8 GHz is equal to $2 / 8 \lambda$. The line is loaded with a series RC circuit with $\mathrm{R}=70 \Omega$ and $\mathrm{C}=0.609 \mathrm{pF}$.
a) Compute the input impedance at $6.8 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=16 \mathrm{~dB}, \mathrm{G}_{2}=19 \mathrm{~dB}$ and $\mathrm{G}_{3}=19 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.65 \mathrm{~dB}, \mathrm{~F}_{2}=2.97 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.70 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. (1.5p)
5. The scattering parameters of two transistors at 6.1 GHz are as follows:

	S $_{11}$		S $_{21}$		S $_{12}$		S $_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.722	-135.9°	4.273	51.1°	0.121	-12.2°	0.251	-114.2°
T2	0.694	-108.0°	2.813	82.5°	0.101	27.3°	0.446	-71.1°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T 2 . ($\mathbf{0 . 5 p}$)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 18
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.170+\mathrm{j} \cdot 0.870$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=20.8 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $147.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 45Ω and a physical length which at 9.1 GHz is equal to $2 / 5 \lambda$. The line is loaded with a shunt RL circuit with $\mathrm{R}=29 \Omega$ and $\mathrm{L}=1.240 \mathrm{nH}$.
a) Compute the input impedance at $9.1 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=16 \mathrm{~dB}, \mathrm{G}_{2}=12 \mathrm{~dB}$ and $\mathrm{G}_{3}=12 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.49 \mathrm{~dB}, \mathrm{~F}_{2}=2.12 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.46 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 7.8 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.598	178.6°	3.859	15.4°	0.136	-38.9°	0.102	-164.3°
T 2	0.616	-141.2°	2.540	57.8°	0.110	17.0°	0.378	-89.8°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 19
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.795+\mathrm{j} \cdot 1.145$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=20.5 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $131.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 70Ω and a physical length which at 7.7 GHz is equal to $7 / 8 \lambda$. The line is loaded with a series $R C$ circuit with $R=30 \Omega$ and $C=0.454 \mathrm{pF}$.
a) Compute the input impedance at $7.7 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=11 \mathrm{~dB}, \mathrm{G}_{2}=18 \mathrm{~dB}$ and $\mathrm{G}_{3}=10 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.04 \mathrm{~dB}, \mathrm{~F}_{2}=2.58 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.15 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 6.8 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.664	-154.8°	4.093	35.9°	0.128	-24.6°	0.186	-131.2°
T 2	0.652	-122.0°	2.694	72.0°	0.108	22.4°	0.418	-78.8°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 20
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.070+\mathrm{j} \cdot 1.035$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=19.4 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $140.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 65Ω and a physical length which at 8.5 GHz is equal to $2 / 6 \lambda$. The line is loaded with a shunt RC circuit with $\mathrm{R}=57 \Omega$ and $\mathrm{C}=0.281 \mathrm{pF}$.
a) Compute the input impedance at $8.5 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=14 \mathrm{~dB}, \mathrm{G}_{2}=14 \mathrm{~dB}$ and $\mathrm{G}_{3}=14 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.28 \mathrm{~dB}, \mathrm{~F}_{2}=2.82 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.26 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 8.1 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.582	170.1°	3.789	9.2°	0.138	-43.1°	0.086	179.1°
T2	0.607	-147.0°	2.496	53.7°	0.110	15.4°	0.366	-93.2°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 21
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.935+\mathrm{j} \cdot 1.265$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=22.0 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $80.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 50Ω and a physical length which at 9.3 GHz is equal to $6 / 8 \lambda$. The line is loaded with a shunt RC circuit with $\mathrm{R}=62 \Omega$ and $\mathrm{C}=0.304 \mathrm{pF}$.
a) Compute the input impedance at $9.3 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=11 \mathrm{~dB}, \mathrm{G}_{2}=13 \mathrm{~dB}$ and $\mathrm{G}_{3}=11 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.26 \mathrm{~dB}, \mathrm{~F}_{2}=2.41 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.30 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 5.2 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.780	-113.4°	4.416	70.5°	0.108	3.2°	0.315	-94.1°
T2	0.756	-90.0°	2.942	96.0°	0.092	35.2°	0.490	-60.4°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 22
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.280-\mathrm{j} \cdot 1.020$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=18.1 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $75.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 95Ω and a physical length which at 9.7 GHz is equal to $4 / 6 \lambda$. The line is loaded with a shunt RL circuit with $\mathrm{R}=38 \Omega$ and $\mathrm{L}=1.202 \mathrm{nH}$.
a) Compute the input impedance at $9.7 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=11 \mathrm{~dB}, \mathrm{G}_{2}=17 \mathrm{~dB}$ and $\mathrm{G}_{3}=14 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.79 \mathrm{~dB}, \mathrm{~F}_{2}=2.72 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.71 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 8.0 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.585	173.3°	3.813	11.4°	0.137	-41.6°	0.086	-171.3°
T 2	0.610	-145.0°	2.510	55.0°	0.110	16.0°	0.370	-92.0°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 23
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.725-\mathrm{j} \cdot 1.165$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=22.5 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $68.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 50Ω and a physical length which at 7.9 GHz is equal to $2 / 5 \lambda$. The line is loaded with a series RL circuit with $\mathrm{R}=47 \Omega$ and $\mathrm{L}=1.369 \mathrm{nH}$.
a) Compute the input impedance at $7.9 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=17 \mathrm{~dB}, \mathrm{G}_{2}=12 \mathrm{~dB}$ and $\mathrm{G}_{3}=11 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.76 \mathrm{~dB}, \mathrm{~F}_{2}=2.49 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.87 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 9.1 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.553	137.5°	3.539	-12.7°	0.144	-58.2°	0.098	88.7°
T 2	0.579	-167.0°	2.354	40.5°	0.110	9.7°	0.327	-105.4°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 24
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.865+\mathrm{j} \cdot 1.175$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=19.4 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $90.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 70Ω and a physical length which at 9.8 GHz is equal to $4 / 8 \lambda$. The line is loaded with a shunt RC circuit with $\mathrm{R}=68 \Omega$ and $\mathrm{C}=0.320 \mathrm{pF}$.
a) Compute the input impedance at $9.8 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=10 \mathrm{~dB}, \mathrm{G}_{2}=14 \mathrm{~dB}$ and $\mathrm{G}_{3}=13 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.71 \mathrm{~dB}, \mathrm{~F}_{2}=2.64 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.88 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 6.9 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.656	-157.5°	4.068	33.7°	0.129	-26.4°	0.176	-133.7°
T 2	0.646	-124.0°	2.677	70.5°	0.109	21.7°	0.414	-79.9°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 25
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.875+\mathrm{j} \cdot 0.990$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=19.6 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $79.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 95Ω and a physical length which at 7.3 GHz is equal to $3 / 6 \lambda$. The line is loaded with a series $R C$ circuit with $R=39 \Omega$ and $C=0.598 \mathrm{pF}$.
a) Compute the input impedance at $7.3 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=14 \mathrm{~dB}, \mathrm{G}_{2}=16 \mathrm{~dB}$ and $\mathrm{G}_{3}=15 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.55 \mathrm{~dB}, \mathrm{~F}_{2}=2.19 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.12 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 8.5 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.569	157.1°	3.692	0.4°	0.141	-49.2°	0.087	140.8°
T2	0.595	-155.0°	2.440	48.5°	0.110	13.0°	0.350	-98.0°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 26
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.995+\mathrm{j} \cdot 1.025$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=19.8 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $112.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 55Ω and a physical length which at 9.8 GHz is equal to $3 / 5 \lambda$. The line is loaded with a shunt RL circuit with $\mathrm{R}=45 \Omega$ and $\mathrm{L}=0.507 \mathrm{nH}$.
a) Compute the input impedance at $9.8 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=10 \mathrm{~dB}, \mathrm{G}_{2}=15 \mathrm{~dB}$ and $\mathrm{G}_{3}=15 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.71 \mathrm{~dB}, \mathrm{~F}_{2}=2.29 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.39 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 8.9 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.556	144.2°	3.595	-8.3°	0.143	-55.2°	0.088	102.5°
T 2	0.583	-163.0°	2.384	43.3°	0.110	10.6°	0.334	-102.8°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 27

Time allowed: 2 hours; All materials/equipments authorized
Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.965+\mathrm{j} \cdot 0.995$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=17.3 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $146.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 40Ω and a physical length which at 7.0 GHz is equal to $7 / 8 \lambda$. The line is loaded with a series RL circuit with $\mathrm{R}=55 \Omega$ and $\mathrm{L}=1.678 \mathrm{nH}$.
a) Compute the input impedance at $7.0 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=14 \mathrm{~dB}, \mathrm{G}_{2}=10 \mathrm{~dB}$ and $\mathrm{G}_{3}=17 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.23 \mathrm{~dB}, \mathrm{~F}_{2}=2.18 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.97 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 7.7 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.604	-178.7°	3.882	17.4°	0.135	-37.6°	0.110	-160.7°
T 2	0.619	-139.3°	2.555	59.2°	0.110	17.5°	0.382	-88.7°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 28
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.095+\mathrm{j} \cdot 1.045$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=17.5 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $104.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 45Ω and a physical length which at 7.5 GHz is equal to $6 / 8 \lambda$. The line is loaded with a series RL circuit with $\mathrm{R}=71 \Omega$ and $\mathrm{L}=1.417 \mathrm{nH}$.
a) Compute the input impedance at $7.5 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=11 \mathrm{~dB}, \mathrm{G}_{2}=13 \mathrm{~dB}$ and $\mathrm{G}_{3}=18 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.41 \mathrm{~dB}, \mathrm{~F}_{2}=2.30 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.00 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 9.0 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.553	141.0°	3.571	-10.5°	0.144	-56.7°	0.088	92.9°
T 2	0.580	-165.0°	2.370	42.0°	0.110	10.0°	0.330	-104.0°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 29

Time allowed: 2 hours; All materials/equipments authorized
Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.895+\mathrm{j} \cdot 1.210$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=18.2 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $130.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 85Ω and a physical length which at 10.0 GHz is equal to $6 / 8 \lambda$. The line is loaded with a shunt RC circuit with $\mathrm{R}=37 \Omega$ and $\mathrm{C}=0.310 \mathrm{pF}$.
a) Compute the input impedance at $10.0 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=19 \mathrm{~dB}, \mathrm{G}_{2}=19 \mathrm{~dB}$ and $\mathrm{G}_{3}=17 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.30 \mathrm{~dB}, \mathrm{~F}_{2}=2.67 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.50 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 9.3 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.554	130.7°	3.474	-17.0°	0.144	-61.3°	0.118	80.3°
T 2	0.577	-171.0°	2.322	37.5°	0.110	9.1°	0.321	-108.2°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 30
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.155+\mathrm{j} \cdot 1.110$ compute the admittance ($\mathbf{(1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=18.6 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $92.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 70Ω and a physical length which at 6.6 GHz is equal to $1 / 3 \lambda$. The line is loaded with a series $R C$ circuit with $R=31 \Omega$ and $C=0.402 \mathrm{pF}$.
a) Compute the input impedance at $6.6 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=12 \mathrm{~dB}, \mathrm{G}_{2}=18 \mathrm{~dB}$ and $\mathrm{G}_{3}=18 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.46 \mathrm{~dB}, \mathrm{~F}_{2}=2.95 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.59 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 5.4 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.767	-118.4°	4.387	66.2°	0.111	-0.2°	0.301	-98.5°
T2	0.742	-94.0°	2.914	93.0°	0.094	33.4°	0.480	-62.8°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No.31
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.050-\mathrm{j} \cdot 1.165$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=19.7 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $96.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 60Ω and a physical length which at 8.2 GHz is equal to $2 / 6 \lambda$. The line is loaded with a shunt RC circuit with $\mathrm{R}=41 \Omega$ and $\mathrm{C}=0.566 \mathrm{pF}$.
a) Compute the input impedance at $8.2 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=14 \mathrm{~dB}, \mathrm{G}_{2}=11 \mathrm{~dB}$ and $\mathrm{G}_{3}=18 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.14 \mathrm{~dB}, \mathrm{~F}_{2}=2.28 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.92 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 8.7 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.563	150.7°	3.644	-3.9°	0.142	-52.2°	0.087	121.6°
T 2	0.589	-159.0°	2.412	45.9°	0.110	11.8°	0.342	-100.4°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No.32
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.045-\mathrm{j} \cdot 1.035$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=19.1 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $111.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 80Ω and a physical length which at 7.1 GHz is equal to $3 / 6 \lambda$. The line is loaded with a series $R C$ circuit with $R=40 \Omega$ and $C=0.432 \mathrm{pF}$.
a) Compute the input impedance at $7.1 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=18 \mathrm{~dB}, \mathrm{G}_{2}=15 \mathrm{~dB}$ and $\mathrm{G}_{3}=13 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.14 \mathrm{~dB}, \mathrm{~F}_{2}=2.92 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.38 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 5.9 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.736	-130.7°	4.314	55.5°	0.118	-8.7°	0.267	-109.6°
T 2	0.707	-104.0°	2.844	85.5°	0.099	28.9°	0.455	-68.8°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No.33
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.130+\mathrm{j} \cdot 1.285$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=18.8 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $143.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 95Ω and a physical length which at 7.1 GHz is equal to $3 / 6 \lambda$. The line is loaded with a series RL circuit with $\mathrm{R}=58 \Omega$ and $\mathrm{L}=1.606 \mathrm{nH}$.
a) Compute the input impedance at $7.1 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=19 \mathrm{~dB}, \mathrm{G}_{2}=14 \mathrm{~dB}$ and $\mathrm{G}_{3}=12 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.05 \mathrm{~dB}, \mathrm{~F}_{2}=2.34 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.10 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 7.4 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.623	-170.8°	3.950	23.5°	0.133	-33.5°	0.135	-150.2°
T 2	0.628	-133.6°	2.600	63.4°	0.110	19.0°	0.394	-85.4°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No.34
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.015-\mathrm{j} \cdot 1.245$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=22.5 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $93.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 90Ω and a physical length which at 9.7 GHz is equal to $1 / 3 \lambda$. The line is loaded with a shunt RC circuit with $\mathrm{R}=66 \Omega$ and $\mathrm{C}=0.383 \mathrm{pF}$.
a) Compute the input impedance at $9.7 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=19 \mathrm{~dB}, \mathrm{G}_{2}=16 \mathrm{~dB}$ and $\mathrm{G}_{3}=16 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.63 \mathrm{~dB}, \mathrm{~F}_{2}=2.34 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.51 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 6.2 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.714	-138.6°	4.248	49.0°	0.122	-13.9°	0.241	-116.7°
T 2	0.688	-110.0°	2.796	81.0°	0.102	26.6°	0.442	-72.2°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No.35
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.720-\mathrm{j} \cdot 0.880$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=22.0 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $67.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 95Ω and a physical length which at 9.8 GHz is equal to $4 / 6 \lambda$. The line is loaded with a shunt RL circuit with $\mathrm{R}=71 \Omega$ and $\mathrm{L}=1.063 \mathrm{nH}$.
a) Compute the input impedance at $9.8 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=19 \mathrm{~dB}, \mathrm{G}_{2}=11 \mathrm{~dB}$ and $\mathrm{G}_{3}=16 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.15 \mathrm{~dB}, \mathrm{~F}_{2}=2.91 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.18 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 6.7 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.673	-152.1°	4.119	38.1°	0.127	-22.8°	0.195	-128.8°
T 2	0.658	-120.0°	2.711	73.5°	0.107	23.1°	0.422	-77.7°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No.36
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.990+\mathrm{j} \cdot 0.985$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=22.5 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $78.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 60Ω and a physical length which at 7.8 GHz is equal to $4 / 6 \lambda$. The line is loaded with a shunt RC circuit with $\mathrm{R}=36 \Omega$ and $\mathrm{C}=0.331 \mathrm{pF}$.
a) Compute the input impedance at $7.8 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=11 \mathrm{~dB}, \mathrm{G}_{2}=12 \mathrm{~dB}$ and $\mathrm{G}_{3}=18 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.21 \mathrm{~dB}, \mathrm{~F}_{2}=2.62 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.02 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 5.8 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.742	-128.3°	4.328	57.6°	0.117	-7.0°	0.274	-107.4°
T 2	0.714	-102.0°	2.858	87.0°	0.098	29.8°	0.460	-67.6°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T 2 . ($\mathbf{0 . 5 p}$)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No.37
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.755+\mathrm{j} \cdot 0.705$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=19.2 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $64.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 35Ω and a physical length which at 7.9 GHz is equal to $4 / 6 \lambda$. The line is loaded with a series $R C$ circuit with $R=29 \Omega$ and $C=0.426 \mathrm{pF}$.
a) Compute the input impedance at $7.9 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=16 \mathrm{~dB}, \mathrm{G}_{2}=15 \mathrm{~dB}$ and $\mathrm{G}_{3}=11 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.39 \mathrm{~dB}, \mathrm{~F}_{2}=2.09 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.60 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 6.6 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.681	-149.4°	4.145	40.3°	0.126	-21.1°	0.204	-126.4°
T 2	0.664	-118.0°	2.728	75.0°	0.106	23.8°	0.426	-76.6°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No.38
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.250-\mathrm{j} \cdot 1.275$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=19.9 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $85.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 40Ω and a physical length which at 7.4 GHz is equal to $1 / 6 \lambda$. The line is loaded with a shunt RL circuit with $\mathrm{R}=55 \Omega$ and $\mathrm{L}=1.165 \mathrm{nH}$.
a) Compute the input impedance at $7.4 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=13 \mathrm{~dB}, \mathrm{G}_{2}=15 \mathrm{~dB}$ and $\mathrm{G}_{3}=15 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.18 \mathrm{~dB}, \mathrm{~F}_{2}=2.70 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.24 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 9.5 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.554	123.8°	3.409	-21.4°	0.144	-64.3°	0.138	71.9°
T 2	0.575	-175.0°	2.290	34.5°	0.110	8.5°	0.315	-111.0°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No.39

Time allowed: 2 hours; All materials/equipments authorized
Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.205+\mathrm{j} \cdot 1.255$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=18.6 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $137.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 40Ω and a physical length which at 9.5 GHz is equal to $4 / 5 \lambda$. The line is loaded with a shunt RC circuit with $\mathrm{R}=64 \Omega$ and $\mathrm{C}=0.253 \mathrm{pF}$.
a) Compute the input impedance at $9.5 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=14 \mathrm{~dB}, \mathrm{G}_{2}=12 \mathrm{~dB}$ and $\mathrm{G}_{3}=15 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.76 \mathrm{~dB}, \mathrm{~F}_{2}=2.86 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.67 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 6.5 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.689	-146.7°	4.170	42.4°	0.125	-19.3°	0.214	-123.9°
T 2	0.670	-116.0°	2.745	76.5°	0.105	24.5°	0.430	-75.5°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 40
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.765-\mathrm{j} \cdot 0.985$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=21.4 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $73.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 50Ω and a physical length which at 8.5 GHz is equal to $2 / 3 \lambda$. The line is loaded with a shunt $R C$ circuit with $R=46 \Omega$ and $C=0.738 \mathrm{pF}$.
a) Compute the input impedance at $8.5 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=17 \mathrm{~dB}, \mathrm{G}_{2}=16 \mathrm{~dB}$ and $\mathrm{G}_{3}=17 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.38 \mathrm{~dB}, \mathrm{~F}_{2}=2.54 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.75 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 8.3 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.575	163.6°	3.740	4.8°	0.139	-46.1°	0.087	160.0°
T2	0.601	-151.0°	2.468	51.1°	0.110	14.2°	0.358	-95.6°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No.41
 Time allowed: $\mathbf{2}$ hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.120+\mathrm{j} \cdot 1.275$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=20.5 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $140.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 50Ω and a physical length which at 7.8 GHz is equal to $6 / 8 \lambda$. The line is loaded with a series $R C$ circuit with $R=63 \Omega$ and $C=0.279 \mathrm{pF}$.
a) Compute the input impedance at $7.8 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=14 \mathrm{~dB}, \mathrm{G}_{2}=13 \mathrm{~dB}$ and $\mathrm{G}_{3}=17 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.84 \mathrm{~dB}, \mathrm{~F}_{2}=2.21 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.03 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 7.9 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.591	176.0°	3.836	13.4°	0.136	-40.3°	0.094	-167.8°
T 2	0.613	-143.1°	2.525	56.4°	0.110	16.5°	0.374	-90.9°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 42
 Time allowed: $\mathbf{2}$ hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.225+\mathrm{j} \cdot 0.750$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=18.3 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $148.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 95Ω and a physical length which at 8.6 GHz is equal to $4 / 6 \lambda$. The line is loaded with a shunt RC circuit with $\mathrm{R}=29 \Omega$ and $\mathrm{C}=0.566 \mathrm{pF}$.
a) Compute the input impedance at $8.6 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=13 \mathrm{~dB}, \mathrm{G}_{2}=13 \mathrm{~dB}$ and $\mathrm{G}_{3}=16 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.89 \mathrm{~dB}, \mathrm{~F}_{2}=2.88 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.58 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 5.6 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.755	-123.3°	4.357	61.9°	0.114	-3.6°	0.288	-102.9°
T 2	0.728	-98.0°	2.886	90.0°	0.096	31.6°	0.470	-65.2°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T 2 . ($\mathbf{0 . 5 p}$)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No.43
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.275-\mathrm{j} \cdot 1.055$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=20.4 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $63.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 50Ω and a physical length which at 8.8 GHz is equal to $2 / 6 \lambda$. The line is loaded with a shunt RC circuit with $\mathrm{R}=53 \Omega$ and $\mathrm{C}=0.466 \mathrm{pF}$.
a) Compute the input impedance at $8.8 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=16 \mathrm{~dB}, \mathrm{G}_{2}=18 \mathrm{~dB}$ and $\mathrm{G}_{3}=10 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.25 \mathrm{~dB}, \mathrm{~F}_{2}=2.45 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.48 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 9.7 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.554	116.9°	3.344	-25.7°	0.145	-67.4°	0.159	63.5°
T 2	0.573	-179.0°	2.258	31.5°	0.110	7.9°	0.309	-113.8°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No.44
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.965+\mathrm{j} \cdot 1.110$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=22.9 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $145.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 80Ω and a physical length which at 9.7 GHz is equal to $3 / 6 \lambda$. The line is loaded with a series $R C$ circuit with $R=39 \Omega$ and $C=0.336 \mathrm{pF}$.
a) Compute the input impedance at $9.7 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=10 \mathrm{~dB}, \mathrm{G}_{2}=16 \mathrm{~dB}$ and $\mathrm{G}_{3}=14 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.95 \mathrm{~dB}, \mathrm{~F}_{2}=2.43 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.34 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 9.6 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.554	120.3°	3.377	-23.5°	0.145	-65.9°	0.149	67.7°
T 2	0.574	-177.0°	2.274	33.0°	0.110	8.2°	0.312	-112.4°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T 2 . ($\mathbf{0 . 5 p}$)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No.45
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.250-\mathrm{j} \cdot 0.835$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=17.8 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $70.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 55Ω and a physical length which at 8.2 GHz is equal to $4 / 8 \lambda$. The line is loaded with a shunt RC circuit with $\mathrm{R}=33 \Omega$ and $\mathrm{C}=0.557 \mathrm{pF}$.
a) Compute the input impedance at $8.2 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=15 \mathrm{~dB}, \mathrm{G}_{2}=17 \mathrm{~dB}$ and $\mathrm{G}_{3}=17 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.01 \mathrm{~dB}, \mathrm{~F}_{2}=2.48 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.81 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 7.6 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.610	-176.1°	3.905	19.5°	0.134	-36.2°	0.118	-157.2°
T 2	0.622	-137.4°	2.570	60.6°	0.110	18.0°	0.386	-87.6°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T 2 . ($\mathbf{0 . 5 p}$)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No.46
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.005-\mathrm{j} \cdot 1.190$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=22.9 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $72.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 75Ω and a physical length which at 8.9 GHz is equal to $4 / 6 \lambda$. The line is loaded with a series $R C$ circuit with $R=73 \Omega$ and $\mathrm{C}=0.363 \mathrm{pF}$.
a) Compute the input impedance at $8.9 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=12 \mathrm{~dB}, \mathrm{G}_{2}=10 \mathrm{~dB}$ and $\mathrm{G}_{3}=17 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.03 \mathrm{~dB}, \mathrm{~F}_{2}=2.08 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.29 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 7.3 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.629	-168.2°	3.973	25.5°	0.132	-32.2°	0.143	-146.7°
T 2	0.631	-131.7°	2.615	64.8°	0.110	19.5°	0.398	-84.3°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad
\qquad , Examination Session \qquad June \qquad / _ 2023

SUBJECT No.47
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.260+\mathrm{j} \cdot 0.925$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=18.3 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $110.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 50Ω and a physical length which at 8.1 GHz is equal to $2 / 5 \lambda$. The line is loaded with a series RL circuit with $\mathrm{R}=40 \Omega$ and $\mathrm{L}=1.230 \mathrm{nH}$.
a) Compute the input impedance at $8.1 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=18 \mathrm{~dB}, \mathrm{G}_{2}=12 \mathrm{~dB}$ and $\mathrm{G}_{3}=14 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.45 \mathrm{~dB}, \mathrm{~F}_{2}=2.42 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.50 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 9.9 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.555	110.0°	3.279	-30.0°	0.145	-70.5°	0.179	55.1°
T2	0.571	177.0°	2.226	28.5°	0.110	7.3°	0.303	-116.6°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No.48
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.165-\mathrm{j} \cdot 0.725$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=22.0 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $71.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 35Ω and a physical length which at 7.1 GHz is equal to $2 / 8 \lambda$. The line is loaded with a series $R C$ circuit with $R=56 \Omega$ and $C=0.435 \mathrm{pF}$.
a) Compute the input impedance at $7.1 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=12 \mathrm{~dB}, \mathrm{G}_{2}=11 \mathrm{~dB}$ and $\mathrm{G}_{3}=19 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.46 \mathrm{~dB}, \mathrm{~F}_{2}=2.64 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.93 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 6.3 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.705	-141.3°	4.222	46.8°	0.123	-15.7°	0.232	-119.1°
T 2	0.682	-112.0°	2.779	79.5°	0.103	25.9°	0.438	-73.3°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No.49
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.955-\mathrm{j} \cdot 0.850$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=17.8 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $91.5 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 95Ω and a physical length which at 8.6 GHz is equal to $3 / 6 \lambda$. The line is loaded with a series $R C$ circuit with $R=73 \Omega$ and $\mathrm{C}=0.337 \mathrm{pF}$.
a) Compute the input impedance at $8.6 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=16 \mathrm{~dB}, \mathrm{G}_{2}=10 \mathrm{~dB}$ and $\mathrm{G}_{3}=11 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.75 \mathrm{~dB}, \mathrm{~F}_{2}=2.61 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.74 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 6.0 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T 1	0.730	-133.2°	4.299	53.3°	0.120	-10.4°	0.260	-111.8°
T 2	0.700	-106.0°	2.830	84.0°	0.100	28.0°	0.450	-70.0°

a) Perform the μ-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. ($\mathbf{0 . 5 p}$)
d) Compute maximum stable gain for transistor T 2 . ($\mathbf{0 . 5 p}$)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)
\qquad Examination Session \qquad June \qquad / _ 2023

SUBJECT No. 50
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.250-\mathrm{j} \cdot 0.750$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=22.3 \mathrm{~dB}$.
a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
b) If the power at the coupled port is measured to be $54.0 \mu \mathrm{~W}$ compute the power at the input port (in mW). (1p)
c) In the same situation compute the power at the through port (in dBm and mW). (1p)
3. A transmission line has a characteristic impedance 50Ω and a physical length which at 7.5 GHz is equal to $5 / 8 \lambda$. The line is loaded with a shunt RL circuit with $\mathrm{R}=35 \Omega$ and $\mathrm{L}=0.638 \mathrm{nH}$.
a) Compute the input impedance at $7.5 \mathrm{GHz}(\mathbf{2 p})$
b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
4. You must cascade three amplifiers, in the specified order, having gains $\mathrm{G}_{1}=16 \mathrm{~dB}, \mathrm{G}_{2}=10 \mathrm{~dB}$ and $\mathrm{G}_{3}=11 \mathrm{~dB}$ and noise factors $\mathrm{F}_{1}=2.27 \mathrm{~dB}, \mathrm{~F}_{2}=2.99 \mathrm{~dB}$ and $\mathrm{F}_{3}=2.52 \mathrm{~dB}$.
a) Compute the overall gain. (0.5p)
b) Compute the overall noise factor. ($\mathbf{1 . 5 p}$)
5. The scattering parameters of two transistors at 9.4 GHz are as follows:

	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.554	127.2°	3.441	-19.2°	0.144	-62.8°	0.128	76.1°
T 2	0.576	-173.0°	2.306	36.0°	0.110	8.8°	0.318	-109.6°

a) Perform the μ^{\prime}-test for both transistors. (1p)
b) Which of the two transistors has better stability? (0.5p)
c) Compute the unilateral figure of merit for transistor T1. (0.5p)
d) Compute maximum stable gain for transistor T2. (0.5p)
e) The two transistors are cascaded in the order T1-T2. Design the match between the two transistors (max gain) with stubs (shunt stub, at least one solution) (2p)
f) Draw the match schematic. (0.5p)

