SUBJECT No.1

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.165 + j \cdot 0.720$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 20.2 dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 71.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 60Ω and a physical length which at 9.5GHz is equal to $3/5\lambda$. The line is loaded with a shunt RC circuit with R = 45Ω and C = 0.364pF.
 - a) Compute the input impedance at 9.5GHz (2p)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 11dB$, $G_2 = 16dB$ and $G_3 = 10dB$ and noise factors $F_1 = 2.75dB$, $F_2 = 2.15dB$ and $F_3 = 2.80dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 5.3 GHz are as follows:

	S ₁₁		S	21	S ₁₂		S_{22}	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.773	-115.9°	4.401	68.3°	0.110	1.5°	0.308	-96.3°
T2	0.749	-92.0°	2.928	94.5°	0.093	34.3°	0.485	-61.6°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.2

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $0.820 + j \cdot 1.170$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 21.7dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 127.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 65Ω and a physical length which at 8.3GHz is equal to $3/6\lambda$. The line is loaded with a shunt RC circuit with R = 30Ω and C = 0.408pF.
 - a) Compute the input impedance at 8.3GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 13$ dB, $G_2 = 19$ dB and $G_3 = 11$ dB and noise factors $F_1 = 2.74$ dB, $F_2 = 2.20$ dB and $F_3 = 2.26$ dB.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 7.1 GHz are as follows:

	S ₁₁		S	21	S_{12} S_{22}		S ₂₂	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.642	-162.9°	4.019	29.5°	0.131	-29.5°	0.159	-139.6°
T2	0.637	-127.9°	2.645	67.6°	0.110	20.5°	0.406	-82.1°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.3

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.220 j \cdot 0.755$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 21.7dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 143.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 65Ω and a physical length which at 8.4GHz is equal to $1/3\lambda$. The line is loaded with a series RL circuit with R = 50Ω and L = 0.617nH.
 - a) Compute the input impedance at 8.4GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 17$ dB, $G_2 = 15$ dB and $G_3 = 13$ dB and noise factors $F_1 = 2.44$ dB, $F_2 = 2.15$ dB and $F_3 = 2.11$ dB.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 7.0 GHz are as follows:

	S ₁₁		S	21	S_{12} S_{22}		S 22	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.648	-160.2°	4.042	31.5°	0.130	-28.2°	0.167	-136.1°
T2	0.640	-126.0°	2.660	69.0°	0.110	21.0°	0.410	-81.0°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.4

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.230 + j \cdot 1.105$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 19.4dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 51.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 55 Ω and a physical length which at 7.4GHz is equal to 2/6 λ . The line is loaded with a series RC circuit with R = 33 Ω and C = 0.362pF.
 - a) Compute the input impedance at 7.4GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 17dB$, $G_2 = 14dB$ and $G_3 = 18dB$ and noise factors $F_1 = 2.75dB$, $F_2 = 2.04dB$ and $F_3 = 2.63dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 6.4 GHz are as follows:

	S ₁₁		S	21	S ₁₂ S ₂₂		S ₂₂	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.697	-144.0°	4.196	44.6°	0.124	-17.5°	0.223	-121.5°
T2	0.676	-114.0°	2.762	78.0°	0.104	25.2°	0.434	-74.4°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.5

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.005 j \cdot 1.080$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 20.4dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 126.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 70Ω and a physical length which at 8.2GHz is equal to $5/8\lambda$. The line is loaded with a shunt RL circuit with R = 52Ω and L = 0.612nH.
 - a) Compute the input impedance at 8.2GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 11dB$, $G_2 = 15dB$ and $G_3 = 17dB$ and noise factors $F_1 = 2.08dB$, $F_2 = 2.46dB$ and $F_3 = 2.84dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 7.5 GHz are as follows:

	S ₁₁		S	21	S	12	S ₂₂	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.617	-173.4°	3.927	21.5°	0.134	-34.9°	0.127	-153.7°
T2	0.625	-135.5°	2.585	62.0°	0.110	18.5°	0.390	-86.5°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.6

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to 0.865 + j·0.795 compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 20.3dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 78.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 90 Ω and a physical length which at 9.8GHz is equal to $2/3\lambda$. The line is loaded with a shunt RL circuit with R = 35 Ω and L = 0.733nH.
 - a) Compute the input impedance at 9.8GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 12dB$, $G_2 = 17dB$ and $G_3 = 18dB$ and noise factors $F_1 = 2.99dB$, $F_2 = 2.18dB$ and $F_3 = 2.17dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 8.2 GHz are as follows:

	S ₁₁		S	21	\mathbf{S}_{12}		S	\mathbf{S}_{22}	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	
T1	0.579	166.8°	3.765	7.0°	0.138	-44.6°	0.086	169.5°	
T2	0.604	-149.0°	2.482	52.4°	0.110	14.8°	0.362	-94.4°	

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.7

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $0.790 j \cdot 1.270$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 18.0dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 111.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 40Ω and a physical length which at 7.8GHz is equal to $1/3\lambda$. The line is loaded with a series RL circuit with R = 67Ω and L = 1.088nH.
 - a) Compute the input impedance at 7.8GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 15$ dB, $G_2 = 14$ dB and $G_3 = 11$ dB and noise factors $F_1 = 2.23$ dB, $F_2 = 2.01$ dB and $F_3 = 2.74$ dB.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 5.7 GHz are as follows:

	S ₁₁		S	21	S	12	S ₂₂	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.749	-125.8°	4.343	59.8°	0.115	-5.3°	0.281	-105.1°
T2	0.721	-100.0°	2.872	88.5°	0.097	30.7°	0.465	-66.4°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.8

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.060 j \cdot 0.990$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 18.9dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 100.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 75 Ω and a physical length which at 6.6GHz is equal to 1/3 λ . The line is loaded with a series RC circuit with R = 58 Ω and C = 0.518pF.
 - a) Compute the input impedance at 6.6GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 12dB$, $G_2 = 17dB$ and $G_3 = 12dB$ and noise factors $F_1 = 2.48dB$, $F_2 = 2.27dB$ and $F_3 = 2.55dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 9.8 GHz are as follows:

	S ₁₁		S	21	S ₁₂ S ₂₂		S 22	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.555	113.5°	3.312	-27.9°	0.145	-68.9°	0.169	59.3°
T2	0.572	179.0°	2.242	30.0°	0.110	7.6°	0.306	-115.2°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.9

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.125 + j \cdot 0.935$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 17.4dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 148.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 55 Ω and a physical length which at 9.6GHz is equal to $2/3\lambda$. The line is loaded with a series RL circuit with R = 42 Ω and L = 1.187nH.
 - a) Compute the input impedance at 9.6GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 12dB$, $G_2 = 12dB$ and $G_3 = 18dB$ and noise factors $F_1 = 2.84dB$, $F_2 = 2.65dB$ and $F_3 = 2.45dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 8.8 GHz are as follows:

	S ₁₁		S	21	S_{12} S_{22}		S ₂₂	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.559	147.4°	3.619	-6.1°	0.143	-53.7°	0.088	112.1°
T2	0.586	-161.0°	2.398	44.6°	0.110	11.2°	0.338	-101.6°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.10

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to 1.180 − j·0.805 compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 22.6dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 52.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 60Ω and a physical length which at 7.5GHz is equal to $2/6\lambda$. The line is loaded with a series RL circuit with R = 57 Ω and L = 1.180nH.
 - a) Compute the input impedance at 7.5GHz (**2p**)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 10dB$, $G_2 = 15dB$ and $G_3 = 17dB$ and noise factors $F_1 = 2.96dB$, $F_2 = 2.65dB$ and $F_3 = 2.11dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 5.5 GHz are as follows:

	S ₁₁		S	21	S_{12} S_{22}		S ₂₂	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.761	-120.8°	4.372	64.0°	0.112	-1.9°	0.295	-100.7°
T2	0.735	-96.0°	2.900	91.5°	0.095	32.5°	0.475	-64.0°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.11

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- **Note**. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.
- 1. For a normalized impedance equal to $1.235 j \cdot 1.250$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 19.2dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 68.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 65Ω and a physical length which at 6.6GHz is equal to $2/5\lambda$. The line is loaded with a shunt RL circuit with R = 32Ω and L = 1.335nH.
 - a) Compute the input impedance at 6.6GHz (2p)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 14dB$, $G_2 = 14dB$ and $G_3 = 17dB$ and noise factors $F_1 = 2.37dB$, $F_2 = 2.86dB$ and $F_3 = 2.30dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 8.4 GHz are as follows:

	S ₁₁		S	21	S_{12} S_{22}		22	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.572	160.4°	3.716	2.6°	0.140	-47.6°	0.087	150.4°
T2	0.598	-153.0°	2.454	49.8°	0.110	13.6°	0.354	-96.8°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.12

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.020 j \cdot 0.720$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 17.7dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 146.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 95 Ω and a physical length which at 8.7GHz is equal to 4/5 λ . The line is loaded with a shunt RC circuit with R = 69 Ω and C = 0.297pF.
 - a) Compute the input impedance at 8.7GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 13$ dB, $G_2 = 11$ dB and $G_3 = 10$ dB and noise factors $F_1 = 2.66$ dB, $F_2 = 2.54$ dB and $F_3 = 2.41$ dB.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 8.6 GHz are as follows:

	S ₁₁		S	21	S_{12} S_{22}		22	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.566	153.9°	3.668	-1.8°	0.141	-50.7°	0.087	131.2°
T2	0.592	-157.0°	2.426	47.2°	0.110	12.4°	0.346	-99.2°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.13

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $0.830 + j \cdot 1.195$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 18.8dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 86.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 45Ω and a physical length which at 6.6GHz is equal to $2/3\lambda$. The line is loaded with a shunt RL circuit with R = 59Ω and L = 0.986nH.
 - a) Compute the input impedance at 6.6GHz (2p)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 15$ dB, $G_2 = 15$ dB and $G_3 = 14$ dB and noise factors $F_1 = 2.04$ dB, $F_2 = 2.60$ dB and $F_3 = 2.08$ dB.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 5.1 GHz are as follows:

	S	11	S	21	\mathbf{S}_{12}		\mathbf{S}_{22}	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.786	-110.9°	4.430	72.6°	0.107	4.9°	0.322	-91.8°
T2	0.763	-88.0°	2.956	97.5°	0.091	36.1°	0.495	-59.2°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.14

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.030 j \cdot 1.085$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 21.9dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 141.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 35 Ω and a physical length which at 8.6GHz is equal to 2/3 λ . The line is loaded with a shunt RC circuit with R = 64 Ω and C = 0.615pF.
 - a) Compute the input impedance at 8.6GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 17dB$, $G_2 = 17dB$ and $G_3 = 16dB$ and noise factors $F_1 = 2.38dB$, $F_2 = 2.74dB$ and $F_3 = 2.25dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 5.0 GHz are as follows:

	S ₁₁		S	21	S	S ₁₂		S_{22}	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	
T1	0.792	-108.5°	4.445	74.8°	0.105	6.6°	0.329	-89.6°	
T2	0.770	-86.0°	2.970	99.0°	0.090	37.0°	0.500	-58.0°	

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.15

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.245 + j \cdot 1.150$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 21.1 dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 91.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 45Ω and a physical length which at 7.1GHz is equal to $3/5\lambda$. The line is loaded with a shunt RC circuit with R = 40Ω and C = 0.638pF.
 - a) Compute the input impedance at 7.1GHz (2p)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 16dB$, $G_2 = 17dB$ and $G_3 = 18dB$ and noise factors $F_1 = 2.08dB$, $F_2 = 2.53dB$ and $F_3 = 2.98dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 9.2 GHz are as follows:

	S ₁₁		S	21	\mathbf{S}_{12}		S_{22}	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.553	134.1°	3.506	-14.9°	0.144	-59.7°	0.108	84.5°
T2	0.578	-169.0°	2.338	39.0°	0.110	9.4°	0.324	-106.8°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.16

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.050 + j \cdot 0.890$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 20.5dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 112.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 40Ω and a physical length which at 7.6GHz is equal to $2/6\lambda$. The line is loaded with a shunt RL circuit with R = 70Ω and L = 0.961nH.
 - a) Compute the input impedance at 7.6GHz (2p)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 15$ dB, $G_2 = 17$ dB and $G_3 = 11$ dB and noise factors $F_1 = 2.06$ dB, $F_2 = 2.04$ dB and $F_3 = 2.36$ dB.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 7.2 GHz are as follows:

	S ₁₁		S	21	S_{12} S_{22}		S 22	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.635	-165.5°	3.996	27.5°	0.131	-30.9°	0.151	-143.1°
T2	0.634	-129.8°	2.630	66.2°	0.110	20.0°	0.402	-83.2°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.17

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to 0.750 + j·0.940 compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 19.6dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 126.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 35Ω and a physical length which at 6.8GHz is equal to $2/8\lambda$. The line is loaded with a series RC circuit with R = 70Ω and C = 0.609pF.
 - a) Compute the input impedance at 6.8GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 16dB$, $G_2 = 19dB$ and $G_3 = 19dB$ and noise factors $F_1 = 2.65dB$, $F_2 = 2.97dB$ and $F_3 = 2.70dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 6.1 GHz are as follows:

	S	11	S	21	S	12	S_{22}	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.722	-135.9°	4.273	51.1°	0.121	-12.2°	0.251	-114.2°
T2	0.694	-108.0°	2.813	82.5°	0.101	27.3°	0.446	-71.1°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.18

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.170 + j \cdot 0.870$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 20.8dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 147.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 45Ω and a physical length which at 9.1GHz is equal to $2/5\lambda$. The line is loaded with a shunt RL circuit with R = 29Ω and L = 1.240nH.
 - a) Compute the input impedance at 9.1GHz (**2p**)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 16dB$, $G_2 = 12dB$ and $G_3 = 12dB$ and noise factors $F_1 = 2.49dB$, $F_2 = 2.12dB$ and $F_3 = 2.46dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 7.8 GHz are as follows:

	S	11	S	21	S	12	\mathbf{S}_{22}	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.598	178.6°	3.859	15.4°	0.136	-38.9°	0.102	-164.3°
T2	0.616	-141.2°	2.540	57.8°	0.110	17.0°	0.378	-89.8°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.19

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $0.795 + j \cdot 1.145$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 20.5dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 131.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 70Ω and a physical length which at 7.7GHz is equal to $7/8\lambda$. The line is loaded with a series RC circuit with R = 30Ω and C = 0.454pF.
 - a) Compute the input impedance at 7.7GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 11dB$, $G_2 = 18dB$ and $G_3 = 10dB$ and noise factors $F_1 = 2.04dB$, $F_2 = 2.58dB$ and $F_3 = 2.15dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 6.8 GHz are as follows:

	S ₁₁		S	21	S_{12} S_{22}		S 22	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.664	-154.8°	4.093	35.9°	0.128	-24.6°	0.186	-131.2°
T2	0.652	-122.0°	2.694	72.0°	0.108	22.4°	0.418	-78.8°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.20

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.070 + j \cdot 1.035$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 19.4dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 140.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 65Ω and a physical length which at 8.5GHz is equal to $2/6\lambda$. The line is loaded with a shunt RC circuit with R = 57Ω and C = 0.281pF.
 - a) Compute the input impedance at 8.5GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 14dB$, $G_2 = 14dB$ and $G_3 = 14dB$ and noise factors $F_1 = 2.28dB$, $F_2 = 2.82dB$ and $F_3 = 2.26dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 8.1 GHz are as follows:

	S ₁₁		S	21	\mathbf{S}_{12}		S	22
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.582	170.1°	3.789	9.2°	0.138	-43.1°	0.086	179.1°
T2	0.607	-147.0°	2.496	53.7°	0.110	15.4°	0.366	-93.2°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.21

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $0.935 + j \cdot 1.265$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 22.0 dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 80.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 50 Ω and a physical length which at 9.3GHz is equal to 6/8 λ . The line is loaded with a shunt RC circuit with R = 62 Ω and C = 0.304pF.
 - a) Compute the input impedance at 9.3GHz (2p)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 11dB$, $G_2 = 13dB$ and $G_3 = 11dB$ and noise factors $F_1 = 2.26dB$, $F_2 = 2.41dB$ and $F_3 = 2.30dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 5.2 GHz are as follows:

	S	11	S	21	S	12	S_{22}	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.780	-113.4°	4.416	70.5°	0.108	3.2°	0.315	-94.1°
T2	0.756	-90.0°	2.942	96.0°	0.092	35.2°	0.490	-60.4°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.22

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- **Note**. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.
- 1. For a normalized impedance equal to $1.280 j \cdot 1.020$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 18.1dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 75.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 95 Ω and a physical length which at 9.7GHz is equal to 4/6 λ . The line is loaded with a shunt RL circuit with R = 38 Ω and L = 1.202nH.
 - a) Compute the input impedance at 9.7GHz (2p)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 11dB$, $G_2 = 17dB$ and $G_3 = 14dB$ and noise factors $F_1 = 2.79dB$, $F_2 = 2.72dB$ and $F_3 = 2.71dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 8.0 GHz are as follows:

	S	11	S	21	\mathbf{S}_{12}		S_{22}	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.585	173.3°	3.813	11.4°	0.137	-41.6°	0.086	-171.3°
T2	0.610	-145.0°	2.510	55.0°	0.110	16.0°	0.370	-92.0°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.23

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- **Note**. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.
- 1. For a normalized impedance equal to $0.725 j \cdot 1.165$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 22.5 dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 68.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 50 Ω and a physical length which at 7.9GHz is equal to $2/5\lambda$. The line is loaded with a series RL circuit with R = 47 Ω and L = 1.369nH.
 - a) Compute the input impedance at 7.9GHz (**2p**)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 17dB$, $G_2 = 12dB$ and $G_3 = 11dB$ and noise factors $F_1 = 2.76dB$, $F_2 = 2.49dB$ and $F_3 = 2.87dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 9.1 GHz are as follows:

	S	11	S	21	\mathbf{S}_{12}		\mathbf{S}_{22}	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.553	137.5°	3.539	-12.7°	0.144	-58.2°	0.098	88.7°
T2	0.579	-167.0°	2.354	40.5°	0.110	9.7°	0.327	-105.4°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.24

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $0.865 + j \cdot 1.175$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 19.4dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 90.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 70Ω and a physical length which at 9.8GHz is equal to $4/8\lambda$. The line is loaded with a shunt RC circuit with R = 68Ω and C = 0.320pF.
 - a) Compute the input impedance at 9.8GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 10dB$, $G_2 = 14dB$ and $G_3 = 13dB$ and noise factors $F_1 = 2.71dB$, $F_2 = 2.64dB$ and $F_3 = 2.88dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 6.9 GHz are as follows:

	S ₁₁		S	21	S ₁₂ S ₂		S 22	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.656	-157.5°	4.068	33.7°	0.129	-26.4°	0.176	-133.7°
T2	0.646	-124.0°	2.677	70.5°	0.109	21.7°	0.414	-79.9°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.25

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $0.875 + j \cdot 0.990$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 19.6dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 79.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 95 Ω and a physical length which at 7.3GHz is equal to 3/6 λ . The line is loaded with a series RC circuit with R = 39 Ω and C = 0.598pF.
 - a) Compute the input impedance at 7.3GHz (2p)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 14dB$, $G_2 = 16dB$ and $G_3 = 15dB$ and noise factors $F_1 = 2.55dB$, $F_2 = 2.19dB$ and $F_3 = 2.12dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 8.5 GHz are as follows:

	S ₁₁		S	21	S ₁₂ S ₂		22	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.569	157.1°	3.692	0.4°	0.141	-49.2°	0.087	140.8°
T2	0.595	-155.0°	2.440	48.5°	0.110	13.0°	0.350	-98.0°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.26

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to 0.995 + j·1.025 compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 19.8dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 112.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 55 Ω and a physical length which at 9.8GHz is equal to 3/5 λ . The line is loaded with a shunt RL circuit with R = 45 Ω and L = 0.507nH.
 - a) Compute the input impedance at 9.8GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 10dB$, $G_2 = 15dB$ and $G_3 = 15dB$ and noise factors $F_1 = 2.71dB$, $F_2 = 2.29dB$ and $F_3 = 2.39dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 8.9 GHz are as follows:

	S	11	S	21	S	S_{12}		S ₂₂	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	
T1	0.556	144.2°	3.595	-8.3°	0.143	-55.2°	0.088	102.5°	
T2	0.583	-163.0°	2.384	43.3°	0.110	10.6°	0.334	-102.8°	

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.27

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to 0.965 + j·0.995 compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 17.3dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 146.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 40Ω and a physical length which at 7.0GHz is equal to $7/8\lambda$. The line is loaded with a series RL circuit with R = 55 Ω and L = 1.678nH.
 - a) Compute the input impedance at 7.0GHz (**2p**)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 14dB$, $G_2 = 10dB$ and $G_3 = 17dB$ and noise factors $F_1 = 2.23dB$, $F_2 = 2.18dB$ and $F_3 = 2.97dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 7.7 GHz are as follows:

	S ₁₁		S	21	S ₁₂		\mathbf{S}_{22}	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.604	-178.7°	3.882	17.4°	0.135	-37.6°	0.110	-160.7°
T2	0.619	-139.3°	2.555	59.2°	0.110	17.5°	0.382	-88.7°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.28

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.095 + j \cdot 1.045$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 17.5dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 104.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 45Ω and a physical length which at 7.5GHz is equal to $6/8\lambda$. The line is loaded with a series RL circuit with R = 71 Ω and L = 1.417nH.
 - a) Compute the input impedance at 7.5GHz (2p)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 11dB$, $G_2 = 13dB$ and $G_3 = 18dB$ and noise factors $F_1 = 2.41dB$, $F_2 = 2.30dB$ and $F_3 = 2.00dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 9.0 GHz are as follows:

	S	11	S	21	\mathbf{S}_{12}		S_{22}	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.553	141.0°	3.571	-10.5°	0.144	-56.7°	0.088	92.9°
T2	0.580	-165.0°	2.370	42.0°	0.110	10.0°	0.330	-104.0°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.29

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $0.895 + j \cdot 1.210$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 18.2dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 130.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 85Ω and a physical length which at 10.0GHz is equal to $6/8\lambda$. The line is loaded with a shunt RC circuit with R = 37Ω and C = 0.310pF.
 - a) Compute the input impedance at 10.0GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 19dB$, $G_2 = 19dB$ and $G_3 = 17dB$ and noise factors $F_1 = 2.30dB$, $F_2 = 2.67dB$ and $F_3 = 2.50dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 9.3 GHz are as follows:

	S ₁₁		S	S_{21} S_{12} S_{22}		S_{12}		S ₂₂
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.554	130.7°	3.474	-17.0°	0.144	-61.3°	0.118	80.3°
T2	0.577	-171.0°	2.322	37.5°	0.110	9.1°	0.321	-108.2°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.30

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.155 + j \cdot 1.110$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 18.6dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 92.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 70Ω and a physical length which at 6.6GHz is equal to $1/3\lambda$. The line is loaded with a series RC circuit with R = 31Ω and C = 0.402pF.
 - a) Compute the input impedance at 6.6GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 12dB$, $G_2 = 18dB$ and $G_3 = 18dB$ and noise factors $F_1 = 2.46dB$, $F_2 = 2.95dB$ and $F_3 = 2.59dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 5.4 GHz are as follows:

	S ₁₁		S	21	S ₁₂		S ₂₂	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.767	-118.4°	4.387	66.2°	0.111	-0.2°	0.301	-98.5°
T2	0.742	-94.0°	2.914	93.0°	0.094	33.4°	0.480	-62.8°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.31

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.050 j \cdot 1.165$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 19.7 dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 96.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 60Ω and a physical length which at 8.2GHz is equal to $2/6\lambda$. The line is loaded with a shunt RC circuit with R = 41 Ω and C = 0.566pF.
 - a) Compute the input impedance at 8.2GHz (2p)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 14dB$, $G_2 = 11dB$ and $G_3 = 18dB$ and noise factors $F_1 = 2.14dB$, $F_2 = 2.28dB$ and $F_3 = 2.92dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 8.7 GHz are as follows:

	S ₁₁		S	21	\mathbf{S}_{12}		S ₂₂	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.563	150.7°	3.644	-3.9°	0.142	-52.2°	0.087	121.6°
T2	0.589	-159.0°	2.412	45.9°	0.110	11.8°	0.342	-100.4°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.32

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.045 j \cdot 1.035$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 19.1 dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 111.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 80 Ω and a physical length which at 7.1GHz is equal to 3/6 λ . The line is loaded with a series RC circuit with R = 40 Ω and C = 0.432pF.
 - a) Compute the input impedance at 7.1GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 18$ dB, $G_2 = 15$ dB and $G_3 = 13$ dB and noise factors $F_1 = 2.14$ dB, $F_2 = 2.92$ dB and $F_3 = 2.38$ dB.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 5.9 GHz are as follows:

	S	11	S	21	\mathbf{S}_{12}		<u> </u>	S ₂₂	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	
T1	0.736	-130.7°	4.314	55.5°	0.118	-8.7°	0.267	-109.6°	
T2	0.707	-104.0°	2.844	85.5°	0.099	28.9°	0.455	-68.8°	

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.33

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.130 + j \cdot 1.285$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 18.8dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 143.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 95 Ω and a physical length which at 7.1GHz is equal to 3/6 λ . The line is loaded with a series RL circuit with R = 58 Ω and L = 1.606nH.
 - a) Compute the input impedance at 7.1GHz (**2p**)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 19dB$, $G_2 = 14dB$ and $G_3 = 12dB$ and noise factors $F_1 = 2.05dB$, $F_2 = 2.34dB$ and $F_3 = 2.10dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 7.4 GHz are as follows:

	S ₁₁		S	21	S_{12} S_{22}		S ₂₂	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.623	-170.8°	3.950	23.5°	0.133	-33.5°	0.135	-150.2°
T2	0.628	-133.6°	2.600	63.4°	0.110	19.0°	0.394	-85.4°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.34

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to 1.015 − j·1.245 compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 22.5 dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 93.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 90 Ω and a physical length which at 9.7GHz is equal to 1/3 λ . The line is loaded with a shunt RC circuit with R = 66 Ω and C = 0.383pF.
 - a) Compute the input impedance at 9.7GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 19dB$, $G_2 = 16dB$ and $G_3 = 16dB$ and noise factors $F_1 = 2.63dB$, $F_2 = 2.34dB$ and $F_3 = 2.51dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 6.2 GHz are as follows:

	S ₁₁		S	21	S_{12} S		S 22	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.714	-138.6°	4.248	49.0°	0.122	-13.9°	0.241	-116.7°
T2	0.688	-110.0°	2.796	81.0°	0.102	26.6°	0.442	-72.2°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.35

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- **Note**. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.
- 1. For a normalized impedance equal to $0.720 j \cdot 0.880$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 22.0 dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 67.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 95 Ω and a physical length which at 9.8GHz is equal to 4/6 λ . The line is loaded with a shunt RL circuit with R = 71 Ω and L = 1.063nH.
 - a) Compute the input impedance at 9.8GHz (2p)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 19dB$, $G_2 = 11dB$ and $G_3 = 16dB$ and noise factors $F_1 = 2.15dB$, $F_2 = 2.91dB$ and $F_3 = 2.18dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 6.7 GHz are as follows:

	S ₁₁		S	21	S ₁₂ S ₂₂		S 22	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.673	-152.1°	4.119	38.1°	0.127	-22.8°	0.195	-128.8°
T2	0.658	-120.0°	2.711	73.5°	0.107	23.1°	0.422	-77.7°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.36

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to 0.990 + j·0.985 compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 22.5dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 78.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 60Ω and a physical length which at 7.8GHz is equal to $4/6\lambda$. The line is loaded with a shunt RC circuit with R = 36Ω and C = 0.331pF.
 - a) Compute the input impedance at 7.8GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 11dB$, $G_2 = 12dB$ and $G_3 = 18dB$ and noise factors $F_1 = 2.21dB$, $F_2 = 2.62dB$ and $F_3 = 2.02dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 5.8 GHz are as follows:

	S ₁₁		S	21	S_{12} S_{22}		S ₂₂	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.742	-128.3°	4.328	57.6°	0.117	-7.0°	0.274	-107.4°
T2	0.714	-102.0°	2.858	87.0°	0.098	29.8°	0.460	-67.6°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.37

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $0.755 + j \cdot 0.705$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 19.2dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 64.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 35Ω and a physical length which at 7.9GHz is equal to $4/6\lambda$. The line is loaded with a series RC circuit with R = 29Ω and C = 0.426pF.
 - a) Compute the input impedance at 7.9GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 16dB$, $G_2 = 15dB$ and $G_3 = 11dB$ and noise factors $F_1 = 2.39dB$, $F_2 = 2.09dB$ and $F_3 = 2.60dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 6.6 GHz are as follows:

	S ₁₁		S	21	S_{12}		S 22	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.681	-149.4°	4.145	40.3°	0.126	-21.1°	0.204	-126.4°
T2	0.664	-118.0°	2.728	75.0°	0.106	23.8°	0.426	-76.6°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.38

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.250 j \cdot 1.275$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 19.9dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 85.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 40Ω and a physical length which at 7.4GHz is equal to $1/6\lambda$. The line is loaded with a shunt RL circuit with R = 55 Ω and L = 1.165nH.
 - a) Compute the input impedance at 7.4GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 13$ dB, $G_2 = 15$ dB and $G_3 = 15$ dB and noise factors $F_1 = 2.18$ dB, $F_2 = 2.70$ dB and $F_3 = 2.24$ dB.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 9.5 GHz are as follows:

	S ₁₁		S	21	S_{12}		S ₂₂	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.554	123.8°	3.409	-21.4°	0.144	-64.3°	0.138	71.9°
T2	0.575	-175.0°	2.290	34.5°	0.110	8.5°	0.315	-111.0°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.39

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to 1.205 + j·1.255 compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 18.6dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 137.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 40Ω and a physical length which at 9.5GHz is equal to $4/5\lambda$. The line is loaded with a shunt RC circuit with R = 64Ω and C = 0.253pF.
 - a) Compute the input impedance at 9.5GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 14dB$, $G_2 = 12dB$ and $G_3 = 15dB$ and noise factors $F_1 = 2.76dB$, $F_2 = 2.86dB$ and $F_3 = 2.67dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 6.5 GHz are as follows:

	S ₁₁		S	21	S_{12} S_{22}		S 22	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.689	-146.7°	4.170	42.4°	0.125	-19.3°	0.214	-123.9°
T2	0.670	-116.0°	2.745	76.5°	0.105	24.5°	0.430	-75.5°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.40

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- **Note**. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.
- 1. For a normalized impedance equal to $0.765 j \cdot 0.985$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 21.4dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 73.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 50 Ω and a physical length which at 8.5GHz is equal to 2/3 λ . The line is loaded with a shunt RC circuit with R = 46 Ω and C = 0.738pF.
 - a) Compute the input impedance at 8.5GHz (2p)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 17dB$, $G_2 = 16dB$ and $G_3 = 17dB$ and noise factors $F_1 = 2.38dB$, $F_2 = 2.54dB$ and $F_3 = 2.75dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 8.3 GHz are as follows:

	S ₁₁		S	21	S_{12} S_{2}		22	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.575	163.6°	3.740	4.8°	0.139	-46.1°	0.087	160.0°
T2	0.601	-151.0°	2.468	51.1°	0.110	14.2°	0.358	-95.6°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.41

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.120 + j \cdot 1.275$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 20.5dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 140.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 50 Ω and a physical length which at 7.8GHz is equal to 6/8 λ . The line is loaded with a series RC circuit with R = 63 Ω and C = 0.279pF.
 - a) Compute the input impedance at 7.8GHz (2p)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 14dB$, $G_2 = 13dB$ and $G_3 = 17dB$ and noise factors $F_1 = 2.84dB$, $F_2 = 2.21dB$ and $F_3 = 2.03dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 7.9 GHz are as follows:

	S ₁₁		S	21	\mathbf{S}_{12}		S_{22}	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.591	176.0°	3.836	13.4°	0.136	-40.3°	0.094	-167.8°
T2	0.613	-143.1°	2.525	56.4°	0.110	16.5°	0.374	-90.9°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.42

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to 1.225 + j·0.750 compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 18.3dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 148.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 95 Ω and a physical length which at 8.6GHz is equal to 4/6 λ . The line is loaded with a shunt RC circuit with R = 29 Ω and C = 0.566pF.
 - a) Compute the input impedance at 8.6GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 13$ dB, $G_2 = 13$ dB and $G_3 = 16$ dB and noise factors $F_1 = 2.89$ dB, $F_2 = 2.88$ dB and $F_3 = 2.58$ dB.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 5.6 GHz are as follows:

	S ₁₁		S	21	S_{12} S_{2}		S ₂₂	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.755	-123.3°	4.357	61.9°	0.114	-3.6°	0.288	-102.9°
T2	0.728	-98.0°	2.886	90.0°	0.096	31.6°	0.470	-65.2°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.43

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.275 j \cdot 1.055$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 20.4dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 63.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 50 Ω and a physical length which at 8.8GHz is equal to 2/6 λ . The line is loaded with a shunt RC circuit with R = 53 Ω and C = 0.466pF.
 - a) Compute the input impedance at 8.8GHz (2p)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 16dB$, $G_2 = 18dB$ and $G_3 = 10dB$ and noise factors $F_1 = 2.25dB$, $F_2 = 2.45dB$ and $F_3 = 2.48dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 9.7 GHz are as follows:

	S ₁₁		S	21	S_{12}		S_{22}	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.554	116.9°	3.344	-25.7°	0.145	-67.4°	0.159	63.5°
T2	0.573	-179.0°	2.258	31.5°	0.110	7.9°	0.309	-113.8°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.44

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $0.965 + j \cdot 1.110$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 22.9 dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 145.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 80 Ω and a physical length which at 9.7GHz is equal to 3/6 λ . The line is loaded with a series RC circuit with R = 39 Ω and C = 0.336pF.
 - a) Compute the input impedance at 9.7GHz (2p)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 10dB$, $G_2 = 16dB$ and $G_3 = 14dB$ and noise factors $F_1 = 2.95dB$, $F_2 = 2.43dB$ and $F_3 = 2.34dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 9.6 GHz are as follows:

	S ₁₁		S	21	\mathbf{S}_{12}		S_{22}	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.554	120.3°	3.377	-23.5°	0.145	-65.9°	0.149	67.7°
T2	0.574	-177.0°	2.274	33.0°	0.110	8.2°	0.312	-112.4°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.45

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.250 j \cdot 0.835$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 17.8dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 70.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 55 Ω and a physical length which at 8.2GHz is equal to 4/8 λ . The line is loaded with a shunt RC circuit with R = 33 Ω and C = 0.557pF.
 - a) Compute the input impedance at 8.2GHz (2p)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 15$ dB, $G_2 = 17$ dB and $G_3 = 17$ dB and noise factors $F_1 = 2.01$ dB, $F_2 = 2.48$ dB and $F_3 = 2.81$ dB.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 7.6 GHz are as follows:

	S ₁₁		S	21	S ₁₂ S ₂₂		S ₂₂	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.610	-176.1°	3.905	19.5°	0.134	-36.2°	0.118	-157.2°
T2	0.622	-137.4°	2.570	60.6°	0.110	18.0°	0.386	-87.6°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.46

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- **Note**. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.
- 1. For a normalized impedance equal to $1.005 j \cdot 1.190$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 22.9 dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 72.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 75Ω and a physical length which at 8.9GHz is equal to $4/6\lambda$. The line is loaded with a series RC circuit with R = 73Ω and C = 0.363pF.
 - a) Compute the input impedance at 8.9GHz (**2p**)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 12dB$, $G_2 = 10dB$ and $G_3 = 17dB$ and noise factors $F_1 = 2.03dB$, $F_2 = 2.08dB$ and $F_3 = 2.29dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 7.3 GHz are as follows:

	S ₁₁		S	21	S ₁₂ S ₂₂		S ₂₂	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.629	-168.2°	3.973	25.5°	0.132	-32.2°	0.143	-146.7°
T2	0.631	-131.7°	2.615	64.8°	0.110	19.5°	0.398	-84.3°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.47

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

- 1. For a normalized impedance equal to $1.260 + j \cdot 0.925$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 18.3dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 110.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 50 Ω and a physical length which at 8.1GHz is equal to 2/5 λ . The line is loaded with a series RL circuit with R = 40 Ω and L = 1.230nH.
 - a) Compute the input impedance at 8.1GHz (**2p**)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 18$ dB, $G_2 = 12$ dB and $G_3 = 14$ dB and noise factors $F_1 = 2.45$ dB, $F_2 = 2.42$ dB and $F_3 = 2.50$ dB.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 9.9 GHz are as follows:

	S_1	1	S	21	\mathbf{S}_{12}		\mathbf{S}_{22}	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.555	110.0°	3.279	-30.0°	0.145	-70.5°	0.179	55.1°
T2	0.571	177.0°	2.226	28.5°	0.110	7.3°	0.303	-116.6°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.48

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- **Note**. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.
- 1. For a normalized impedance equal to $1.165 j \cdot 0.725$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 22.0 dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 71.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 35 Ω and a physical length which at 7.1GHz is equal to 2/8 λ . The line is loaded with a series RC circuit with R = 56 Ω and C = 0.435pF.
 - a) Compute the input impedance at 7.1GHz (**2p**)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 12dB$, $G_2 = 11dB$ and $G_3 = 19dB$ and noise factors $F_1 = 2.46dB$, $F_2 = 2.64dB$ and $F_3 = 2.93dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 6.3 GHz are as follows:

	S ₁₁		S	21	S ₁₂ S ₂₂		S 22	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.705	-141.3°	4.222	46.8°	0.123	-15.7°	0.232	-119.1°
T2	0.682	-112.0°	2.779	79.5°	0.103	25.9°	0.438	-73.3°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.49

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- **Note**. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.
- 1. For a normalized impedance equal to $0.955 j \cdot 0.850$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 17.8dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 91.5µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 95 Ω and a physical length which at 8.6GHz is equal to 3/6 λ . The line is loaded with a series RC circuit with R = 73 Ω and C = 0.337pF.
 - a) Compute the input impedance at 8.6GHz (2p)
 - b) If following a fault, the line becomes open-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 16dB$, $G_2 = 10dB$ and $G_3 = 11dB$ and noise factors $F_1 = 2.75dB$, $F_2 = 2.61dB$ and $F_3 = 2.74dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 6.0 GHz are as follows:

	S_{11}		S_{21}		\mathbf{S}_{12}		\mathbf{S}_{22}	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.730	-133.2°	4.299	53.3°	0.120	-10.4°	0.260	-111.8°
T2	0.700	-106.0°	2.830	84.0°	0.100	28.0°	0.450	-70.0°

a) Perform the μ -test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)

SUBJECT No.50

Time allowed: 2 hours; All materials/equipments authorized

Instructor: Assoc. Prof. Radu Damian Student: _

_____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- **Note**. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.
- 1. For a normalized impedance equal to $1.250 j \cdot 0.750$ compute the admittance (**1p**) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (**1p**)
- 2. A measurement system uses an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 22.3 dB.
 - a) Design an ideal coupled line coupler for the specified coupling factor. (1p)
 - b) If the power at the coupled port is measured to be 54.0µW compute the power at the input port (<u>in mW</u>). (1p)
 - c) In the same situation compute the power at the through port (<u>in dBm and mW</u>). (1p)
- 3. A transmission line has a characteristic impedance 50 Ω and a physical length which at 7.5GHz is equal to 5/8 λ . The line is loaded with a shunt RL circuit with R = 35 Ω and L = 0.638nH.
 - a) Compute the input impedance at 7.5GHz (2p)
 - b) If following a fault, the line becomes short-circuited which will be the input impedance? (1p)
- 4. You must cascade three amplifiers, in the specified order, having gains $G_1 = 16dB$, $G_2 = 10dB$ and $G_3 = 11dB$ and noise factors $F_1 = 2.27dB$, $F_2 = 2.99dB$ and $F_3 = 2.52dB$.
 - a) Compute the overall gain. (0.5p)
 - b) Compute the overall noise factor. (1.5p)
- 5. The scattering parameters of two transistors at 9.4 GHz are as follows:

	S ₁₁		S ₂₁		\mathbf{S}_{12}		\mathbf{S}_{22}	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
T1	0.554	127.2°	3.441	-19.2°	0.144	-62.8°	0.128	76.1°
T2	0.576	-173.0°	2.306	36.0°	0.110	8.8°	0.318	-109.6°

a) Perform the μ '-test for both transistors. (1p)

- c) Compute the unilateral figure of merit for transistor T1. (0.5p)
- d) Compute maximum stable gain for transistor T2. (0.5p)
- e) The two transistors are cascaded in the order T1-T2. Design the match **<u>between</u>** the two transistors (max gain) with stubs (shunt stub, at least one solution) (**2p**)
- f) Draw the match schematic. (0.5p)