SUBJECT No.1

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 65 Ω resistor paralel with a 0.634 pF capacitor, at 7.2 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.225 j \cdot 0.995$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.55dB, two matched amplifiers $G_1 = 8.9$ dB and $G_2 = 9.8$ dB and a band-pass filter (equal ripple filter with a ripple equal to 0.5dB). Assume the input power is 3.90mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 22.7dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 43.3 Ω + j·41.7 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.2dB and Noise Factor 1.28dB) and Device 2 (Gain 11.4dB and Noise Factor 1.00dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 12.8 GHz are as follows:

S	S_{11}	\mathbf{S}_{12}		S ₂₁		S ₂₂	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	147.6°	1.720	-20.4°	0.090	-31.0°	0.550	-148.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

SUBJECT No.2

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 39 Ω resistor series with a 0.580 nH inductor, at 9.0 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.145 j \cdot 0.955$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.05dB, two matched amplifiers $G_1 = 7.9$ dB and $G_2 = 10.4$ dB and a band-pass filter (equal ripple filter with a ripple equal to 0.8dB). Assume the input power is 1.45mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 15.3dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 66.8 Ω j.53.8 Ω load.
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.6dB and Noise Factor 1.25dB) and Device 2 (Gain 11.8dB and Noise Factor 1.00dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 14.6 GHz are as follows:

S	S ₁₁	S ₁₂		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.612	124.8°	1.629	-42.8°	0.096	-38.8°	0.556	-164.4°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAȘI Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407

Enrollment Year: ____4___, Examination Session _____June____ / __2022

SUBJECT No.3

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 60 Ω resistor series with a 0.897 nH inductor, at 9.4 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.040 j \cdot 0.825$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.50dB, two matched amplifiers $G_1 = 6.9dB$ and $G_2 = 9.8dB$ and a band-pass filter (equal ripple filter with a ripple equal to 2.5dB). Assume the input power is 1.85mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 16.3dB attenuation. Compute the power at the output port P_{out} (**in mW**) (**1p**)

- 4. A 50 Ω source is connected to a 62.6 Ω j·48.5 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.4dB and Noise Factor 1.23dB) and Device 2 (Gain 11.6dB and Noise Factor 0.93dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 14.5 GHz are as follows:

S	S ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.615	126.0°	1.633	-41.5°	0.095	-38.0°	0.555	-163.5°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

SUBJECT No.4

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 35 Ω resistor paralel with a 1.607 nH inductor, at 7.3 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.925 + j \cdot 0.925$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.95dB, two matched amplifiers $G_1 = 6.9$ dB and $G_2 = 11.0$ dB and a band-pass filter (equal ripple filter with a ripple equal to 2.7dB). Assume the input power is 2.65mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 24.1dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 58.5 Ω + j·46.9 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.5dB and Noise Factor 1.25dB) and Device 2 (Gain 10.4dB and Noise Factor 1.05dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 13.9 GHz are as follows:

S	S ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.631	133.3°	1.658	-33.8°	0.090	-33.8°	0.550	-158.1°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

SUBJECT No.5

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 73 Ω resistor paralel with a 0.433 pF capacitor, at 9.3 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.170 j \cdot 1.105$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 6.10dB, two matched amplifiers $G_1 = 8.9dB$ and $G_2 = 10.9dB$ and a band-pass filter (equal ripple filter with a ripple equal to 1.3dB). Assume the input power is 2.50mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 19.4dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 62.9 Ω j·66.2 Ω load.
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.6dB and Noise Factor 1.24dB) and Device 2 (Gain 11.4dB and Noise Factor 0.92dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 15.0 GHz are as follows:

S	5 ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.600	120.0°	1.614	-48.0°	0.100	-42.0°	0.560	-168.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

SUBJECT No.6

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 38 Ω resistor paralel with a 0.701 nH inductor, at 9.6 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.910 j \cdot 1.225$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 6.55dB, two matched amplifiers $G_1 = 7.4$ dB and $G_2 = 10.9$ dB and a band-pass filter (equal ripple filter with a ripple equal to 2.4dB). Assume the input power is 3.50mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 22.1dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 55.3 Ω j·41.7 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.8dB and Noise Factor 1.27dB) and Device 2 (Gain 11.1dB and Noise Factor 1.03dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 9.0 GHz are as follows:

S	S_{11}	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.650	-164.0°	2.508	28.0°	0.070	3.0°	0.520	-109.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

SUBJECT No.7

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 31 Ω resistor paralel with a 1.291 nH inductor, at 8.8 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.750 j \cdot 0.725$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.05dB, two matched amplifiers $G_1 = 8.1$ dB and $G_2 = 11.5$ dB and a band-pass filter (equal ripple filter with a ripple equal to 1.6dB). Assume the input power is 3.45mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 20.2dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 36.4 Ω j·40.9 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.7dB and Noise Factor 1.10dB) and Device 2 (Gain 11.6dB and Noise Factor 0.95dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 13.2 GHz are as follows:

S	S_{11}	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.638	142.4°	1.698	-25.4°	0.090	-32.4°	0.550	-151.8°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

SUBJECT No.8

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 53 Ω resistor paralel with a 0.286 pF capacitor, at 9.7 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.165 j \cdot 0.840$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 6.05dB, two matched amplifiers $G_1 = 9.9$ dB and $G_2 = 11.3$ dB and a band-pass filter (equal ripple filter with a ripple equal to 0.8dB). Assume the input power is 3.30mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 24.3dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 36.7 Ω j.58.1 Ω load.
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.5dB and Noise Factor 1.12dB) and Device 2 (Gain 11.3dB and Noise Factor 0.91dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 10.6 GHz are as follows:

S	5 ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.602	174.0°	2.306	7.2°	0.080	-4.0°	0.520	-114.4°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

SUBJECT No.9

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 72 Ω resistor paralel with a 0.421 pF capacitor, at 10.0 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.730 + j \cdot 0.865$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 6.30dB, two matched amplifiers $G_1 = 7.4dB$ and $G_2 = 11.0dB$ and a band-pass filter (equal ripple filter with a ripple equal to 1.2dB). Assume the input power is 3.65mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 18.1dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 36.0 Ω + j·36.6 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.4dB and Noise Factor 1.22dB) and Device 2 (Gain 11.4dB and Noise Factor 0.97dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 9.6 GHz are as follows:

S	S_{11}	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.632	-171.8°	2.430	20.2°	0.076	0.6°	0.520	-109.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.10

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group___

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 44 Ω resistor paralel with a 0.348 pF capacitor, at 7.9 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.950 + j \cdot 1.100$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.40dB, two matched amplifiers $G_1 = 9.3dB$ and $G_2 = 10.2dB$ and a band-pass filter (equal ripple filter with a ripple equal to 1.0dB). Assume the input power is 1.50mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 19.7dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 44.9 Ω j.55.9 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.1dB and Noise Factor 1.16dB) and Device 2 (Gain 10.3dB and Noise Factor 1.04dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 13.0 GHz are as follows:

S	S ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	145.0°	1.709	-23.0°	0.090	-32.0°	0.550	-150.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.11

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group___

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 40 Ω resistor paralel with a 0.626 nH inductor, at 9.6 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.225 + j \cdot 1.200$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.80dB, two matched amplifiers $G_1 = 7.4dB$ and $G_2 = 8.0dB$ and a band-pass filter (equal ripple filter with a ripple equal to 2.3dB). Assume the input power is 2.65mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 17.3dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 48.8 Ω + j·51.6 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.1dB and Noise Factor 1.29dB) and Device 2 (Gain 10.7dB and Noise Factor 1.04dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 9.2 GHz are as follows:

S	5 ₁₁	S_{12}		S ₂₁		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.644	-166.6°	2.482	25.4°	0.072	2.2°	0.520	-109.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.12

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 35 Ω resistor paralel with a 0.445 pF capacitor, at 8.2 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.015 j \cdot 0.710$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 6.65dB, two matched amplifiers $G_1 = 9.6dB$ and $G_2 = 8.2dB$ and a band-pass filter (equal ripple filter with a ripple equal to 1.6dB). Assume the input power is 2.25mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 15.1dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 54.5 Ω + j·55.0 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.2dB and Noise Factor 1.16dB) and Device 2 (Gain 10.6dB and Noise Factor 1.07dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 9.4 GHz are as follows:

S	5 ₁₁	S ₁₂		S_{21}		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.638	-169.2°	2.456	22.8°	0.074	1.4°	0.520	-109.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.13

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group___

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 50 Ω resistor paralel with a 0.364 pF capacitor, at 8.7 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.910 j \cdot 0.810$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 6.45dB, two matched amplifiers $G_1 = 6.5$ dB and $G_2 = 9.9$ dB and a band-pass filter (equal ripple filter with a ripple equal to 1.1dB). Assume the input power is 1.85mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 16.4dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 58.0 Ω j·39.9 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.0dB and Noise Factor 1.18dB) and Device 2 (Gain 10.8dB and Noise Factor 0.98dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 12.6 GHz are as follows:

S	S ₁₁	S ₁₂		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	150.2°	1.732	-17.8°	0.090	-30.0°	0.550	-146.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.14

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 52 Ω resistor series with a 0.674 nH inductor, at 7.9 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.040 + j \cdot 1.085$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.10dB, two matched amplifiers $G_1 = 7.9dB$ and $G_2 = 8.2dB$ and a band-pass filter (equal ripple filter with a ripple equal to 2.2dB). Assume the input power is 2.30mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 15.3dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 63.4 Ω j.55.6 Ω load.
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.1dB and Noise Factor 1.18dB) and Device 2 (Gain 10.6dB and Noise Factor 1.05dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 12.5 GHz are as follows:

S	S_{11}	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	151.5°	1.737	-16.5°	0.090	-29.5°	0.550	-145.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.15

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 71 Ω resistor paralel with a 0.595 pF capacitor, at 6.5 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.950 + j \cdot 1.275$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.60dB, two matched amplifiers $G_1 = 7.1dB$ and $G_2 = 10.2dB$ and a band-pass filter (equal ripple filter with a ripple equal to 2.1dB). Assume the input power is 2.30mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 18.5dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 52.1 Ω j·34.0 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.9dB and Noise Factor 1.27dB) and Device 2 (Gain 10.2dB and Noise Factor 1.08dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 10.0 GHz are as follows:

S	S_{11}	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.620	-177.0°	2.378	15.0°	0.080	-1.0°	0.520	-109.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.16

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group___

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 38 Ω resistor paralel with a 0.896 nH inductor, at 7.3 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.855 + j \cdot 1.275$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 6.90dB, two matched amplifiers $G_1 = 8.3dB$ and $G_2 = 9.6dB$ and a band-pass filter (equal ripple filter with a ripple equal to 2.2dB). Assume the input power is 1.60mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 21.7dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 67.8 Ω j·62.9 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.9dB and Noise Factor 1.15dB) and Device 2 (Gain 10.3dB and Noise Factor 1.07dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 14.7 GHz are as follows:

S	S ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.609	123.6°	1.625	-44.1°	0.097	-39.6°	0.557	-165.3°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.17

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group___

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 60 Ω resistor series with a 0.301 pF capacitor, at 7.4 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.735 + j \cdot 0.905$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 5.75dB, two matched amplifiers $G_1 = 8.9$ dB and $G_2 = 10.3$ dB and a band-pass filter (equal ripple filter with a ripple equal to 0.7dB). Assume the input power is 1.30mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 17.5dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 47.1 Ω j.53.9 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.7dB and Noise Factor 1.23dB) and Device 2 (Gain 10.5dB and Noise Factor 1.08dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 13.6 GHz are as follows:

S	S ₁₁	S_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.634	137.2°	1.675	-30.2°	0.090	-33.2°	0.550	-155.4°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.18

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 36 Ω resistor series with a 1.178 nH inductor, at 7.3 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.890 + j \cdot 1.110$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 6.10dB, two matched amplifiers $G_1 = 8.7dB$ and $G_2 = 8.5dB$ and a band-pass filter (equal ripple filter with a ripple equal to 2.9dB). Assume the input power is 1.95mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 17.5dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 51.7 Ω + j·63.0 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.5dB and Noise Factor 1.25dB) and Device 2 (Gain 10.3dB and Noise Factor 0.98dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 8.6 GHz are as follows:

S	5 ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.662	-158.8°	2.576	33.6°	0.070	5.4°	0.516	-101.4°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.19

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 51 Ω resistor series with a 0.649 pF capacitor, at 7.1 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.825 + j \cdot 1.280$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 6.50dB, two matched amplifiers $G_1 = 9.5$ dB and $G_2 = 10.5$ dB and a band-pass filter (equal ripple filter with a ripple equal to 1.3dB). Assume the input power is 2.00mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 19.8dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 68.9 Ω j·68.1 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.5dB and Noise Factor 1.10dB) and Device 2 (Gain 10.5dB and Noise Factor 0.92dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 14.3 GHz are as follows:

S	S_{11}	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.621	128.4°	1.641	-38.9°	0.093	-36.4°	0.553	-161.7°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.20

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 44 Ω resistor series with a 0.477 pF capacitor, at 8.1 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.840 + j \cdot 0.810$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.40dB, two matched amplifiers $G_1 = 7.7dB$ and $G_2 = 9.8dB$ and a band-pass filter (equal ripple filter with a ripple equal to 2.3dB). Assume the input power is 1.60mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 22.0dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 46.2 Ω + j·38.4 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.4dB and Noise Factor 1.19dB) and Device 2 (Gain 10.8dB and Noise Factor 0.90dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 8.9 GHz are as follows:

S	5 ₁₁	S_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.653	-162.7°	2.525	29.4°	0.070	3.6°	0.519	-107.1°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.21

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group___

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 38 Ω resistor series with a 1.417 nH inductor, at 8.4 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.240 + j \cdot 0.825$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 5.55dB, two matched amplifiers $G_1 = 8.4$ dB and $G_2 = 10.8$ dB and a band-pass filter (equal ripple filter with a ripple equal to 0.8dB). Assume the input power is 2.45mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 24.8dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 41.7 Ω j·54.6 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.4dB and Noise Factor 1.15dB) and Device 2 (Gain 11.0dB and Noise Factor 1.02dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 12.7 GHz are as follows:

S	S ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	148.9°	1.726	-19.1°	0.090	-30.5°	0.550	-147.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.22

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 50 Ω resistor series with a 0.318 pF capacitor, at 9.9 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.995 j \cdot 0.700$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.20dB, two matched amplifiers $G_1 = 9.8dB$ and $G_2 = 8.3dB$ and a band-pass filter (equal ripple filter with a ripple equal to 1.6dB). Assume the input power is 3.20mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 20.4dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 43.7 Ω + j·57.3 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.8dB and Noise Factor 1.12dB) and Device 2 (Gain 11.8dB and Noise Factor 1.06dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 8.8 GHz are as follows:

S	5 ₁₁	S ₁₂		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.656	-161.4°	2.542	30.8°	0.070	4.2°	0.518	-105.2°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.23

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 48 Ω resistor paralel with a 1.068 nH inductor, at 9.8 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.745 + j \cdot 0.855$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 6.95dB, two matched amplifiers $G_1 = 6.0$ dB and $G_2 = 8.7$ dB and a band-pass filter (equal ripple filter with a ripple equal to 0.8dB). Assume the input power is 2.20mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 24.2dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 46.8 Ω + j·56.4 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.0dB and Noise Factor 1.27dB) and Device 2 (Gain 10.2dB and Noise Factor 1.02dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 9.9 GHz are as follows:

S	S_{11}	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.623	-175.7°	2.391	16.3°	0.079	-0.6°	0.520	-109.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.24

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 51 Ω resistor paralel with a 0.511 pF capacitor, at 8.8 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.805 + j \cdot 0.845$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 6.45dB, two matched amplifiers $G_1 = 7.4$ dB and $G_2 = 9.4$ dB and a band-pass filter (equal ripple filter with a ripple equal to 2.9dB). Assume the input power is 3.60mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 17.1dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 55.3 Ω j·56.2 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.1dB and Noise Factor 1.29dB) and Device 2 (Gain 10.0dB and Noise Factor 0.97dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 14.4 GHz are as follows:

S	S_{11}	S_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.618	127.2°	1.637	-40.2°	0.094	-37.2°	0.554	-162.6°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.25

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group

Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 59 Ω resistor series with a 0.630 pF capacitor, at 8.2 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.135 j \cdot 0.775$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 5.85dB, two matched amplifiers $G_1 = 7.0$ dB and $G_2 = 10.3$ dB and a band-pass filter (equal ripple filter with a ripple equal to 1.0dB). Assume the input power is 2.45mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 20.5dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 30.2 Ω + j·41.1 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.5dB and Noise Factor 1.12dB) and Device 2 (Gain 11.5dB and Noise Factor 0.93dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 9.3 GHz are as follows:

S	S_{11}	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.641	-167.9°	2.469	24.1°	0.073	1.8°	0.520	-109.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.26

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 50 Ω resistor paralel with a 0.515 pF capacitor, at 7.4 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.265 + j \cdot 1.155$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.80dB, two matched amplifiers $G_1 = 6.4dB$ and $G_2 = 9.3dB$ and a band-pass filter (equal ripple filter with a ripple equal to 0.9dB). Assume the input power is 1.90mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 16.1dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 53.9 Ω j·60.7 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.8dB and Noise Factor 1.25dB) and Device 2 (Gain 11.6dB and Noise Factor 0.91dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 9.7 GHz are as follows:

S	S_{11}	\mathbf{S}_{12}		S ₂₁		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.629	-173.1°	2.417	18.9°	0.077	0.2°	0.520	-109.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.27

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group___

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 74 Ω resistor series with a 1.150 nH inductor, at 8.9 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.085 + j \cdot 0.860$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 5.55dB, two matched amplifiers $G_1 = 9.5$ dB and $G_2 = 9.7$ dB and a band-pass filter (equal ripple filter with a ripple equal to 1.9dB). Assume the input power is 1.80mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 17.0dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 45.3 Ω + j·31.1 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.0dB and Noise Factor 1.26dB) and Device 2 (Gain 11.6dB and Noise Factor 1.05dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 8.5 GHz are as follows:

C.	S ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.665	-157.5°	2.593	35.0°	0.070	6.0°	0.515	-99.5°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ____4___, Examination Session _____June____ / 2022

SUBJECT No.28

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: Group

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 50 Ω resistor paralel with a 0.221 pF capacitor, at 9.8 GHz, compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
- 2. For a normalized admittance equal to $0.715 i \cdot 0.940$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.30 dB, two matched amplifiers $G_1 = 8.1 dB$ and $G_2 = 8.2$ dB and a band-pass filter (equal ripple filter with a ripple equal to 1.0dB). Assume the input power is 2.30mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (in mW) for signals inside the filter passband (2p)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 23.9dB attenuation. Compute the power at the output port P_{out} (in mW) (1p)

- 4. A 50 Ω source is connected to a 65.2 Ω j·67.4 Ω load.
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **Draw** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.8dB and Noise Factor 1.24dB) and Device 2 (Gain 11.0dB and Noise Factor 1.04dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
- 6. The scattering parameters of a transistor at 9.8 GHz are as follows:

	S ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.626	-174.4°	2.404	17.6°	0.078	-0.2°	0.520	-109.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (**1.5p**)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.29

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Grou

Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 42 Ω resistor paralel with a 1.559 nH inductor, at 6.5 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.985 j \cdot 0.815$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 5.05dB, two matched amplifiers $G_1 = 7.4$ dB and $G_2 = 8.1$ dB and a band-pass filter (equal ripple filter with a ripple equal to 2.8dB). Assume the input power is 2.55mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 17.4dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 45.7 Ω j·39.0 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.8dB and Noise Factor 1.24dB) and Device 2 (Gain 11.1dB and Noise Factor 1.08dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 10.1 GHz are as follows:

S	S ₁₁	S ₁₂		S ₂₁		S ₂₂	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.617	-178.5°	2.366	13.7°	0.080	-1.5°	0.520	-109.9°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.30

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group___

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 57 Ω resistor paralel with a 0.320 pF capacitor, at 7.2 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.900 + j \cdot 0.990$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.65dB, two matched amplifiers $G_1 = 7.3$ dB and $G_2 = 10.5$ dB and a band-pass filter (equal ripple filter with a ripple equal to 1.6dB). Assume the input power is 2.80mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 21.7dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 65.7 Ω j·39.5 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.8dB and Noise Factor 1.11dB) and Device 2 (Gain 11.0dB and Noise Factor 0.90dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 12.9 GHz are as follows:

S	S ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	146.3°	1.715	-21.7°	0.090	-31.5°	0.550	-149.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.31

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 60 Ω resistor paralel with a 1.179 nH inductor, at 9.8 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.870 j \cdot 0.775$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 5.90dB, two matched amplifiers $G_1 = 6.3dB$ and $G_2 = 8.6dB$ and a band-pass filter (equal ripple filter with a ripple equal to 2.5dB). Assume the input power is 3.85mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 15.9dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 35.2 Ω + j·64.4 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.7dB and Noise Factor 1.22dB) and Device 2 (Gain 10.4dB and Noise Factor 0.90dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 9.5 GHz are as follows:

	S ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.635	-170.5°	2.443	21.5°	0.075	1.0°	0.520	-109.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.32

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 40 Ω resistor series with a 0.732 nH inductor, at 6.5 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.700 + j \cdot 0.790$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.05dB, two matched amplifiers $G_1 = 9.2$ dB and $G_2 = 10.4$ dB and a band-pass filter (equal ripple filter with a ripple equal to 2.5dB). Assume the input power is 2.40mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 22.1dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 43.8 Ω + j·60.9 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.8dB and Noise Factor 1.14dB) and Device 2 (Gain 10.5dB and Noise Factor 1.05dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 13.4 GHz are as follows:

S	S ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.636	139.8°	1.686	-27.8°	0.090	-32.8°	0.550	-153.6°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.33

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 62 Ω resistor paralel with a 0.549 pF capacitor, at 6.7 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.130 j \cdot 0.840$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 6.90dB, two matched amplifiers $G_1 = 6.7dB$ and $G_2 = 9.5dB$ and a band-pass filter (equal ripple filter with a ripple equal to 2.0dB). Assume the input power is 2.00mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 20.1dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 65.7 Ω j.56.0 Ω load.
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.3dB and Noise Factor 1.16dB) and Device 2 (Gain 11.6dB and Noise Factor 0.94dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 14.9 GHz are as follows:

S	S ₁₁	\mathbf{S}_{12}		S ₂₁		S ₂₂	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.603	121.2°	1.618	-46.7°	0.099	-41.2°	0.559	-167.1°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.34

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 53 Ω resistor paralel with a 1.198 nH inductor, at 6.8 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.160 j \cdot 1.010$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 5.85dB, two matched amplifiers $G_1 = 8.3$ dB and $G_2 = 8.0$ dB and a band-pass filter (equal ripple filter with a ripple equal to 0.6dB). Assume the input power is 3.65mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 15.9dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 67.5 Ω j·47.8 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.0dB and Noise Factor 1.14dB) and Device 2 (Gain 10.8dB and Noise Factor 0.95dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 13.7 GHz are as follows:

S	S ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.633	135.9°	1.669	-31.4°	0.090	-33.4°	0.550	-156.3°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.35

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 42 Ω resistor paralel with a 0.357 pF capacitor, at 8.4 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.970 j \cdot 0.775$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.25 dB, two matched amplifiers $G_1 = 9.9 dB$ and $G_2 = 8.9 dB$ and a band-pass filter (equal ripple filter with a ripple equal to 1.5 dB). Assume the input power is 2.85 mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 15.5dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 61.9 Ω + j·69.7 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.0dB and Noise Factor 1.20dB) and Device 2 (Gain 11.9dB and Noise Factor 0.98dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 14.2 GHz are as follows:

S	S ₁₁	S ₁₂		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.624	129.6°	1.644	-37.6°	0.092	-35.6°	0.552	-160.8°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.36

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group___

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 58 Ω resistor paralel with a 0.370 pF capacitor, at 9.9 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.290 + j \cdot 1.015$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.50dB, two matched amplifiers $G_1 = 6.8dB$ and $G_2 = 9.6dB$ and a band-pass filter (equal ripple filter with a ripple equal to 2.4dB). Assume the input power is 2.35mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 18.4dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 42.1 Ω + j·46.1 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.5dB and Noise Factor 1.14dB) and Device 2 (Gain 10.2dB and Noise Factor 1.04dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 13.3 GHz are as follows:

S	S ₁₁	S ₁₂		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.637	141.1°	1.692	-26.6°	0.090	-32.6°	0.550	-152.7°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.37

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 31 Ω resistor paralel with a 0.817 nH inductor, at 6.8 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.010 j \cdot 0.920$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 6.15dB, two matched amplifiers $G_1 = 8.4$ dB and $G_2 = 8.9$ dB and a band-pass filter (equal ripple filter with a ripple equal to 2.1dB). Assume the input power is 4.00mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 21.1dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 33.1 Ω + j·53.7 Ω load.
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.9dB and Noise Factor 1.14dB) and Device 2 (Gain 11.8dB and Noise Factor 1.09dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 14.1 GHz are as follows:

S	S ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.627	130.8°	1.648	-36.3°	0.091	-34.8°	0.551	-159.9°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.38

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group___

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 45 Ω resistor paralel with a 0.278 pF capacitor, at 8.3 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.980 + j \cdot 0.970$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.70dB, two matched amplifiers $G_1 = 9.0dB$ and $G_2 = 9.7dB$ and a band-pass filter (equal ripple filter with a ripple equal to 2.5dB). Assume the input power is 1.85mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 22.7dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 61.1 Ω + j·68.9 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.8dB and Noise Factor 1.22dB) and Device 2 (Gain 10.4dB and Noise Factor 0.98dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 10.3 GHz are as follows:

S	S ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.611	178.5°	2.342	11.1°	0.080	-2.5°	0.520	-111.7°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.39

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 67 Ω resistor paralel with a 0.275 pF capacitor, at 9.1 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.920 j \cdot 1.225$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 5.10dB, two matched amplifiers $G_1 = 9.6dB$ and $G_2 = 8.5dB$ and a band-pass filter (equal ripple filter with a ripple equal to 1.8dB). Assume the input power is 2.05mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 21.7dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 52.3 Ω + j·33.6 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.6dB and Noise Factor 1.14dB) and Device 2 (Gain 11.3dB and Noise Factor 1.01dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 14.0 GHz are as follows:

S	S ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.630	132.0°	1.652	-35.0°	0.090	-34.0°	0.550	-159.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.40

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 39 Ω resistor series with a 0.823 pF capacitor, at 7.6 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.805 j \cdot 1.050$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 6.85dB, two matched amplifiers $G_1 = 6.9$ dB and $G_2 = 8.4$ dB and a band-pass filter (equal ripple filter with a ripple equal to 1.9dB). Assume the input power is 4.00mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 16.1dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 50.9 Ω j·64.5 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.4dB and Noise Factor 1.24dB) and Device 2 (Gain 11.2dB and Noise Factor 1.08dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 9.1 GHz are as follows:

S	S ₁₁	\mathbf{S}_{12}		S_{21}		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.647	-165.3°	2.495	26.7°	0.071	2.6°	0.520	-109.0°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.41

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 45 Ω resistor paralel with a 0.428 pF capacitor, at 8.9 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.130 j \cdot 0.915$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 6.45dB, two matched amplifiers $G_1 = 7.1$ dB and $G_2 = 11.2$ dB and a band-pass filter (equal ripple filter with a ripple equal to 2.7dB). Assume the input power is 2.85mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 18.1dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 60.2 Ω + j·49.2 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.5dB and Noise Factor 1.25dB) and Device 2 (Gain 11.2dB and Noise Factor 0.94dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 8.7 GHz are as follows:

S	S_{11}	S_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.659	-160.1°	2.559	32.2°	0.070	4.8°	0.517	-103.3°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.42

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 33 Ω resistor paralel with a 0.775 nH inductor, at 7.7 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.880 j \cdot 1.205$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.75dB, two matched amplifiers $G_1 = 6.5$ dB and $G_2 = 10.6$ dB and a band-pass filter (equal ripple filter with a ripple equal to 0.9dB). Assume the input power is 3.15mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 21.9dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 64.0 Ω + j·52.7 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.1dB and Noise Factor 1.21dB) and Device 2 (Gain 10.4dB and Noise Factor 1.03dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 13.1 GHz are as follows:

S	S ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.639	143.7°	1.703	-24.2°	0.090	-32.2°	0.550	-150.9°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.43

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 46 Ω resistor paralel with a 0.488 pF capacitor, at 9.4 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.870 + j \cdot 1.140$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.90dB, two matched amplifiers $G_1 = 8.6dB$ and $G_2 = 10.3dB$ and a band-pass filter (equal ripple filter with a ripple equal to 2.3dB). Assume the input power is 2.15mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 23.7dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 48.2 Ω j·67.5 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.9dB and Noise Factor 1.25dB) and Device 2 (Gain 11.5dB and Noise Factor 0.97dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 10.5 GHz are as follows:

S	S ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.605	175.5°	2.318	8.5°	0.080	-3.5°	0.520	-113.5°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.44

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group

Group____

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 41 Ω resistor paralel with a 0.476 pF capacitor, at 6.7 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.010 j \cdot 0.920$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 6.25 dB, two matched amplifiers $G_1 = 6.3 dB$ and $G_2 = 11.8 dB$ and a band-pass filter (equal ripple filter with a ripple equal to 1.9 dB). Assume the input power is 3.45 mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 23.8dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 31.1 Ω j·51.0 Ω load.
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.8dB and Noise Factor 1.21dB) and Device 2 (Gain 10.0dB and Noise Factor 0.93dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 10.4 GHz are as follows:

S	S ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.608	177.0°	2.330	9.8°	0.080	-3.0°	0.520	-112.6°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.45

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 44 Ω resistor paralel with a 0.490 pF capacitor, at 10.0 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.740 + j \cdot 1.175$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 5.60dB, two matched amplifiers $G_1 = 6.4dB$ and $G_2 = 9.7dB$ and a band-pass filter (equal ripple filter with a ripple equal to 2.1dB). Assume the input power is 1.65mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 22.4dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 69.9 Ω + j·42.2 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.3dB and Noise Factor 1.20dB) and Device 2 (Gain 11.5dB and Noise Factor 0.91dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 8.4 GHz are as follows:

C.	S ₁₁	S	12	S	21	S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.668	-156.2°	2.610	36.4°	0.070	6.6°	0.514	-97.6°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.46

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 48 Ω resistor series with a 0.334 pF capacitor, at 9.6 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.815 j \cdot 1.040$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.55dB, two matched amplifiers $G_1 = 8.4$ dB and $G_2 = 9.1$ dB and a band-pass filter (equal ripple filter with a ripple equal to 1.2dB). Assume the input power is 3.30mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 19.3dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 32.0 Ω j·32.1 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.8dB and Noise Factor 1.16dB) and Device 2 (Gain 10.0dB and Noise Factor 0.93dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 14.8 GHz are as follows:

S	5 ₁₁	\mathbf{S}_{12}		S ₂₁		S ₂₂	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.606	122.4°	1.622	-45.4°	0.098	-40.4°	0.558	-166.2°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.47

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 49 Ω resistor paralel with a 0.371 pF capacitor, at 7.5 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.930 j \cdot 1.070$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 5.65 dB, two matched amplifiers $G_1 = 7.1 dB$ and $G_2 = 9.9 dB$ and a band-pass filter (equal ripple filter with a ripple equal to 1.5 dB). Assume the input power is 2.35 mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 21.6dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 40.3 Ω j·67.5 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.2dB and Noise Factor 1.19dB) and Device 2 (Gain 10.9dB and Noise Factor 1.04dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 10.7 GHz are as follows:

S	S ₁₁	\mathbf{S}_{12}		S ₂₁		\mathbf{S}_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.599	172.5°	2.294	5.9°	0.080	-4.5°	0.520	-115.3°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.48

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 40 Ω resistor series with a 0.394 pF capacitor, at 7.7 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $1.295 + j \cdot 1.230$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 5.45dB, two matched amplifiers $G_1 = 8.6$ dB and $G_2 = 8.7$ dB and a band-pass filter (equal ripple filter with a ripple equal to 1.2dB). Assume the input power is 3.05mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 22.2dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 69.3 Ω + j·30.6 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 9.4dB and Noise Factor 1.13dB) and Device 2 (Gain 11.0dB and Noise Factor 0.93dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 13.8 GHz are as follows:

S	S ₁₁	\mathbf{S}_{12}		S ₂₁		S	22
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.632	134.6°	1.663	-32.6°	0.090	-33.6°	0.550	-157.2°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.49

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 40 Ω resistor paralel with a 0.303 pF capacitor, at 8.0 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.765 + j \cdot 1.135$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.35dB, two matched amplifiers $G_1 = 7.3$ dB and $G_2 = 11.6$ dB and a band-pass filter (equal ripple filter with a ripple equal to 2.9dB). Assume the input power is 1.85mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 19.4dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 45.0 Ω + j·57.8 Ω load.
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.2dB and Noise Factor 1.24dB) and Device 2 (Gain 11.8dB and Noise Factor 1.03dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 13.5 GHz are as follows:

S ₁₁		S ₁₂		S ₂₁		S ₂₂	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.635	138.5°	1.681	-29.0°	0.090	-33.0°	0.550	-154.5°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

Faculty / Department: Electronics, Telecommunications and Information Technology Domain: Telecommunication Technologies and Systems Course : MDCR - EDID407 Enrollment Year: ___4___, Examination Session _____June____ / __2022

SUBJECT No.50

Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: _____ Group_

Note. Except where otherwise specified, assume 50Ω reference impedance.

- 1. For a load composed from a 25 Ω resistor series with a 0.717 pF capacitor, at 7.8 GHz, compute the corresponding reflection coefficient (**1p**) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (**1p**).
- 2. For a normalized admittance equal to $0.745 + j \cdot 1.165$ compute the impedance. (1p)
- 3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor C = 4.65 dB, two matched amplifiers $G_1 = 7.4 dB$ and $G_2 = 8.2 dB$ and a band-pass filter (equal ripple filter with a ripple equal to 2.3 dB). Assume the input power is 3.95 mW.
 - a) Compute the minimum and maximum power at the output port P_{out} (<u>in mW</u>) for signals inside the filter passband (**2p**)
 - b) Compute the power at the measurement port P_{meas} (0.5p)
 - c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 23.7dB attenuation. Compute the power at the output port P_{out} (<u>in mW</u>) (1p)

- 4. A 50 Ω source is connected to a 64.1 Ω + j·38.2 Ω load .
 - a) Compute the reflection coefficient seen by the source. (0.5p)
 - b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
 - c) **<u>Draw</u>** the match schematic. (0.5p)
- 5. You must design a LNA using two amplifiers: Device 1 (Gain 8.4dB and Noise Factor 1.29dB) and Device 2 (Gain 11.7dB and Noise Factor 1.04dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (**1p**)
- 6. The scattering parameters of a transistor at 10.2 GHz are as follows:

S ₁₁		S ₁₂		S_{21}		S ₂₂	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.614	180.0°	2.354	12.4°	0.080	-2.0°	0.520	-110.8°

- a) Prove that you can design a match for maximum gain (0.5p)
- b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
- c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)