UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 1
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 65Ω resistor paralel with a 0.634 pF capacitor, at 7.2 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.225-\mathrm{j} \cdot 0.995$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.55 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=8.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.8 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 0.5 dB). Assume the input power is 3.90 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 22.7 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}$ (in $\mathbf{m W}$)(1p)

4. A 50Ω source is connected to a $43.3 \Omega+\mathrm{j} \cdot 41.7 \Omega \mathrm{load}$.
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.2dB and Noise Factor 1.28 dB) and Device 2 (Gain 11.4 dB and Noise Factor 1.00 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 12.8 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	147.6°	1.720	-20.4°	0.090	-31.0°	0.550	-148.0°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 2
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 39Ω resistor series with a 0.580 nH inductor, at 9.0 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.145-\mathrm{j} \cdot 0.955$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.05 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=7.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.4 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 0.8 dB). Assume the input power is 1.45 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW) for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 15.3 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ \mathbf { m W }})(\mathbf{1 p})$

4. A 50Ω source is connected to a $66.8 \Omega-\mathrm{j} \cdot 53.8 \Omega \mathrm{load}$.
a) Compute the reflection coefficient seen by the source. ($\mathbf{0 . 5 p}$)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.6 dB and Noise Factor 1.25 dB) and Device 2 (Gain 11.8 dB and Noise Factor 1.00 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 14.6 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.612	124.8°	1.629	-42.8°	0.096	-38.8°	0.556	-164.4°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 3
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 60Ω resistor series with a 0.897 nH inductor, at 9.4 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.040-\mathrm{j} \cdot 0.825$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.50 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=6.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.8 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.5 dB). Assume the input power is 1.85 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW) for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 16.3 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{~ m W}})(\mathbf{1 p})$

4. A 50Ω source is connected to a $62.6 \Omega-\mathrm{j} \cdot 48.5 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.4dB and Noise Factor 1.23 dB) and Device 2 (Gain 11.6 dB and Noise Factor 0.93 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 14.5 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.615	126.0°	1.633	-41.5°	0.095	-38.0°	0.555	-163.5°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 4
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 35Ω resistor paralel with a 1.607 nH inductor, at 7.3 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.925+\mathrm{j} \cdot 0.925$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $C=4.95 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=6.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.0 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.7 dB). Assume the input power is 2.65 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 24.1 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}$ (in $\mathbf{m W}$) (1p)

4. A 50Ω source is connected to a $58.5 \Omega+\mathrm{j} \cdot 46.9 \Omega \mathrm{load}$.
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.5 dB and Noise Factor 1.25 dB) and Device 2 (Gain 10.4 dB and Noise Factor 1.05 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 13.9 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.631	133.3°	1.658	-33.8°	0.090	-33.8°	0.550	-158.1°

a) Prove that you can design a match for maximum gain ($\mathbf{0 . 5 p}$)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 5
Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 73Ω resistor paralel with a 0.433 pF capacitor, at 9.3 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.170-\mathrm{j} \cdot 1.105$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.10 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=8.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.9 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.3 dB). Assume the input power is 2.50 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 19.4 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{n} \mathbf{m W}}$) (1p)

4. A 50Ω source is connected to a $62.9 \Omega-\mathrm{j} \cdot 66.2 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.6dB and Noise Factor 1.24 dB) and Device 2 (Gain 11.4 dB and Noise Factor 0.92 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 15.0 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.600	120.0°	1.614	-48.0°	0.100	-42.0°	0.560	-168.0°

a) Prove that you can design a match for maximum gain ($\mathbf{0 . 5 p}$)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 6
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 38Ω resistor paralel with a 0.701 nH inductor, at 9.6 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.910-\mathrm{j} \cdot 1.225$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.55 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=7.4 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.9 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.4 dB). Assume the input power is 3.50 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 22.1 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}$ (in $\mathbf{m W}$) (1p)

4. A 50Ω source is connected to a $55.3 \Omega-\mathrm{j} \cdot 41.7 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.8 dB and Noise Factor 1.27 dB) and Device 2 (Gain 11.1 dB and Noise Factor 1.03 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 9.0 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.650	-164.0°	2.508	28.0°	0.070	3.0°	0.520	-109.0°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 7
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 31Ω resistor paralel with a 1.291 nH inductor, at 8.8 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.750-\mathrm{j} \cdot 0.725$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $C=4.05 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=8.1 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.5 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.6 dB). Assume the input power is 3.45 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 20.2 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}$ (in $\mathbf{m W}$) (1p)

4. A 50Ω source is connected to a $36.4 \Omega-\mathrm{j} \cdot 40.9 \Omega \mathrm{load}$.
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.7 dB and Noise Factor 1.10 dB) and Device 2 (Gain 11.6 dB and Noise Factor 0.95 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 13.2 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.638	142.4°	1.698	-25.4°	0.090	-32.4°	0.550	-151.8°

a) Prove that you can design a match for maximum gain ($\mathbf{0 . 5 p}$)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 8

Time allowed: 2 hours; All materials/equipments authorized
Instructor: assoc. prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 53Ω resistor paralel with a 0.286 pF capacitor, at 9.7 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.165-\mathrm{j} \cdot 0.840$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.05 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=9.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.3 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 0.8 dB). Assume the input power is 3.30 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW) for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 24.3 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ m W})(\mathbf{1 p})$

4. A 50Ω source is connected to a $36.7 \Omega-\mathrm{j} \cdot 58.1 \Omega$ load .
a) Compute the reflection coefficient seen by the source. ($\mathbf{0 . 5 p}$)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.5 dB and Noise Factor 1.12 dB) and Device 2 (Gain 11.3 dB and Noise Factor 0.91 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 10.6 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.602	174.0°	2.306	7.2°	0.080	-4.0°	0.520	-114.4°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 9
Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 72Ω resistor paralel with a 0.421 pF capacitor, at 10.0 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.730+\mathrm{j} \cdot 0.865$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.30 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=7.4 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.0 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.2 dB). Assume the input power is 3.65 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 18.1 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{n} \mathbf{m W}}$) (1p)

4. A 50Ω source is connected to a $36.0 \Omega+\mathrm{j} \cdot 36.6 \Omega \mathrm{load}$.
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.4 dB and Noise Factor 1.22 dB) and Device 2 (Gain 11.4 dB and Noise Factor 0.97 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 9.6 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.632	-171.8°	2.430	20.2°	0.076	0.6°	0.520	-109.0°

a) Prove that you can design a match for maximum gain ($\mathbf{0 . 5 p}$)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 10
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 44Ω resistor paralel with a 0.348 pF capacitor, at 7.9 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.950+\mathrm{j} \cdot 1.100$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $C=4.40 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=9.3 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.2 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.0 dB). Assume the input power is 1.50 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}})$ for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 19.7 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}$ (in $\mathbf{m W}$) (1p)

4. A 50Ω source is connected to a $44.9 \Omega-\mathrm{j} \cdot 55.9 \Omega \mathrm{load}$.
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.1 dB and Noise Factor 1.16 dB) and Device 2 (Gain 10.3 dB and Noise Factor 1.04 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 13.0 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	145.0°	1.709	-23.0°	0.090	-32.0°	0.550	-150.0°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 11
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 40Ω resistor paralel with a 0.626 nH inductor, at 9.6 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.225+\mathrm{j} \cdot 1.200$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.80 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=7.4 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.0 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.3 dB). Assume the input power is 2.65 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 17.3 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{n} \mathbf{m W}}$) (1p)

4. A 50Ω source is connected to a $48.8 \Omega+\mathrm{j} \cdot 51.6 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.1 dB and Noise Factor 1.29 dB) and Device 2 (Gain 10.7 dB and Noise Factor 1.04 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 9.2 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.644	-166.6°	2.482	25.4°	0.072	2.2°	0.520	-109.0°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 12
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 35Ω resistor paralel with a 0.445 pF capacitor, at 8.2 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.015-\mathrm{j} \cdot 0.710$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $C=6.65 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=9.6 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.2 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.6 dB). Assume the input power is 2.25 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 15.1 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{n} \mathbf{m W}}$) (1p)

4. A 50Ω source is connected to a $54.5 \Omega+\mathrm{j} \cdot 55.0 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.2dB and Noise Factor 1.16 dB) and Device 2 (Gain 10.6 dB and Noise Factor 1.07 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 9.4 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.638	-169.2°	2.456	22.8°	0.074	1.4°	0.520	-109.0°

a) Prove that you can design a match for maximum gain ($\mathbf{0 . 5 p}$)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 13
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 50Ω resistor paralel with a 0.364 pF capacitor, at 8.7 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.910-\mathrm{j} \cdot 0.810$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.45 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=6.5 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.9 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.1 dB). Assume the input power is 1.85 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 16.4 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{n} \mathbf{m W}}$) (1p)

4. A 50Ω source is connected to a $58.0 \Omega-\mathrm{j} \cdot 39.9 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.0dB and Noise Factor 1.18 dB) and Device 2 (Gain 10.8 dB and Noise Factor 0.98 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 12.6 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	150.2°	1.732	-17.8°	0.090	-30.0°	0.550	-146.0°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 14

Time allowed: 2 hours; All materials/equipments authorized
Instructor: assoc. prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 52Ω resistor series with a 0.674 nH inductor, at 7.9 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.040+\mathrm{j} \cdot 1.085$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.10 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=7.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.2 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.2 dB). Assume the input power is 2.30 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW$)$ for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 15.3 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ \mathbf { m W }})(\mathbf{1 p})$

4. A 50Ω source is connected to a $63.4 \Omega-\mathrm{j} \cdot 55.6 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.1 dB and Noise Factor 1.18 dB) and Device 2 (Gain 10.6 dB and Noise Factor 1.05 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 12.5 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	151.5°	1.737	-16.5°	0.090	-29.5°	0.550	-145.0°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 15
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 71Ω resistor paralel with a 0.595 pF capacitor, at 6.5 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.950+\mathrm{j} \cdot 1.275$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $C=4.60 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=7.1 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.2 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.1 dB). Assume the input power is 2.30 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 18.5 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{n} \mathbf{m W}}$) (1p)

4. A 50Ω source is connected to a $52.1 \Omega-\mathrm{j} \cdot 34.0 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.9 dB and Noise Factor 1.27 dB) and Device 2 (Gain 10.2 dB and Noise Factor 1.08 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 10.0 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.620	-177.0°	2.378	15.0°	0.080	-1.0°	0.520	-109.0°

a) Prove that you can design a match for maximum gain ($\mathbf{0 . 5 p}$)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 16
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 38Ω resistor paralel with a 0.896 nH inductor, at 7.3 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.855+\mathrm{j} \cdot 1.275$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.90 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=8.3 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.6 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.2 dB). Assume the input power is 1.60 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}})$ for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 21.7 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}$ (in $\mathbf{m W}$) (1p)

4. A 50Ω source is connected to a $67.8 \Omega-\mathrm{j} \cdot 62.9 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.9 dB and Noise Factor 1.15 dB) and Device 2 (Gain 10.3 dB and Noise Factor 1.07 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 14.7 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.609	123.6°	1.625	-44.1°	0.097	-39.6°	0.557	-165.3°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 17
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 60Ω resistor series with a 0.301 pF capacitor, at 7.4 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.735+\mathrm{j} \cdot 0.905$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.75 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=8.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.3 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 0.7 dB). Assume the input power is 1.30 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}})$ for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 17.5 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{n} \mathbf{m W}}$) (1p)

4. A 50Ω source is connected to a $47.1 \Omega-\mathrm{j} \cdot 53.9 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.7 dB and Noise Factor 1.23 dB) and Device 2 (Gain 10.5 dB and Noise Factor 1.08 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 13.6 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.634	137.2°	1.675	-30.2°	0.090	-33.2°	0.550	-155.4°

a) Prove that you can design a match for maximum gain ($\mathbf{0 . 5 p}$)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 18
 Time allowed: $\mathbf{2}$ hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 36Ω resistor series with a 1.178 nH inductor, at 7.3 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.890+\mathrm{j} \cdot 1.110$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.10 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=8.7 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.5 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.9 dB). Assume the input power is 1.95 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW) for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 17.5 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ m W})(\mathbf{1 p})$

4. A 50Ω source is connected to a $51.7 \Omega+\mathrm{j} \cdot 63.0 \Omega$ load .
a) Compute the reflection coefficient seen by the source. ($\mathbf{0 . 5 p}$)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.5 dB and Noise Factor 1.25 dB) and Device 2 (Gain 10.3 dB and Noise Factor 0.98 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 8.6 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.662	-158.8°	2.576	33.6°	0.070	5.4°	0.516	-101.4°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 19

Time allowed: 2 hours; All materials/equipments authorized
Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 51Ω resistor series with a 0.649 pF capacitor, at 7.1 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.825+\mathrm{j} \cdot 1.280$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.50 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=9.5 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.5 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.3 dB). Assume the input power is 2.00 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW) for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 19.8 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ m W})(\mathbf{1 p})$

4. A 50Ω source is connected to a $68.9 \Omega-\mathrm{j} \cdot 68.1 \Omega$ load .
a) Compute the reflection coefficient seen by the source. ($\mathbf{0 . 5 p}$)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.5 dB and Noise Factor 1.10 dB) and Device 2 (Gain 10.5 dB and Noise Factor 0.92 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 14.3 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.621	128.4°	1.641	-38.9°	0.093	-36.4°	0.553	-161.7°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 20
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 44Ω resistor series with a 0.477 pF capacitor, at 8.1 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.840+\mathrm{j} \cdot 0.810$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.40 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=7.7 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.8 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.3 dB). Assume the input power is 1.60 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}})$ for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 22.0 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}$ (in $\mathbf{m W}$) (1p)

4. A 50Ω source is connected to a $46.2 \Omega+\mathrm{j} \cdot 38.4 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.4dB and Noise Factor 1.19 dB) and Device 2 (Gain 10.8 dB and Noise Factor 0.90 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 8.9 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.653	-162.7°	2.525	29.4°	0.070	3.6°	0.519	-107.1°

a) Prove that you can design a match for maximum gain ($\mathbf{0 . 5 p}$)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 21
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 38Ω resistor series with a 1.417 nH inductor, at 8.4 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.240+\mathrm{j} \cdot 0.825$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.55 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=8.4 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.8 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 0.8 dB). Assume the input power is 2.45 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW) for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 24.8 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ m W})(\mathbf{1 p})$

4. A 50Ω source is connected to a $41.7 \Omega-\mathrm{j} \cdot 54.6 \Omega \mathrm{load}$.
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.4 dB and Noise Factor 1.15 dB) and Device 2 (Gain 11.0 dB and Noise Factor 1.02 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 12.7 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	148.9°	1.726	-19.1°	0.090	-30.5°	0.550	-147.0°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 22
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 50Ω resistor series with a 0.318 pF capacitor, at 9.9 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.995-\mathrm{j} \cdot 0.700$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.20 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=9.8 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.3 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.6 dB). Assume the input power is 3.20 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 20.4 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}$ (in $\mathbf{m W}$)(1p)

4. A 50Ω source is connected to a $43.7 \Omega+\mathrm{j} \cdot 57.3 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.8 dB and Noise Factor 1.12 dB) and Device 2 (Gain 11.8 dB and Noise Factor 1.06 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 8.8 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.656	-161.4°	2.542	30.8°	0.070	4.2°	0.518	-105.2°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECTNO.23
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 48Ω resistor paralel with a 1.068 nH inductor, at 9.8 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.745+\mathrm{j} \cdot 0.855$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $C=6.95 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=6.0 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.7 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 0.8 dB). Assume the input power is 2.20 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}})$ for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 24.2 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}$ (in $\mathbf{m W}$) (1p)

4. A 50Ω source is connected to a $46.8 \Omega+\mathrm{j} \cdot 56.4 \Omega \mathrm{load}$.
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.0dB and Noise Factor 1.27 dB) and Device 2 (Gain 10.2 dB and Noise Factor 1.02 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 9.9 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.623	-175.7°	2.391	16.3°	0.079	-0.6°	0.520	-109.0°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 24

Time allowed: 2 hours; All materials/equipments authorized
Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 51Ω resistor paralel with a 0.511 pF capacitor, at 8.8 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.805+\mathrm{j} \cdot 0.845$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.45 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=7.4 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.4 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.9 dB). Assume the input power is 3.60 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW) for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 17.1 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{~ m W}})(\mathbf{1 p})$

4. A 50Ω source is connected to a $55.3 \Omega-\mathrm{j} \cdot 56.2 \Omega$ load .
a) Compute the reflection coefficient seen by the source. ($\mathbf{0 . 5 p}$)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.1 dB and Noise Factor 1.29 dB) and Device 2 (Gain 10.0 dB and Noise Factor 0.97 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 14.4 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.618	127.2°	1.637	-40.2°	0.094	-37.2°	0.554	-162.6°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 25

Time allowed: 2 hours; All materials/equipments authorized
Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 59Ω resistor series with a 0.630 pF capacitor, at 8.2 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.135-\mathrm{j} \cdot 0.775$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.85 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=7.0 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.3 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.0 dB). Assume the input power is 2.45 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW) for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 20.5 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ m W})(\mathbf{1 p})$

4. A 50Ω source is connected to a $30.2 \Omega+\mathrm{j} \cdot 41.1 \Omega$ load .
a) Compute the reflection coefficient seen by the source. ($\mathbf{0 . 5 p}$)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.5dB and Noise Factor 1.12 dB) and Device 2 (Gain 11.5 dB and Noise Factor 0.93 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 9.3 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.641	-167.9°	2.469	24.1°	0.073	1.8°	0.520	-109.0°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 26
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 50Ω resistor paralel with a 0.515 pF capacitor, at 7.4 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.265+\mathrm{j} \cdot 1.155$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.80 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=6.4 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.3 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 0.9 dB). Assume the input power is 1.90 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW) for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 16.1 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{~ m W}})(\mathbf{1 p})$

4. A 50Ω source is connected to a $53.9 \Omega-\mathrm{j} \cdot 60.7 \Omega$ load .
a) Compute the reflection coefficient seen by the source. ($\mathbf{0 . 5 p}$)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.8 dB and Noise Factor 1.25 dB) and Device 2 (Gain 11.6 dB and Noise Factor 0.91 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 9.7 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.629	-173.1°	2.417	18.9°	0.077	0.2°	0.520	-109.0°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 27
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 74Ω resistor series with a 1.150 nH inductor, at 8.9 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.085+\mathrm{j} \cdot 0.860$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.55 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=9.5 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.7 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.9 dB). Assume the input power is 1.80 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW) for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 17.0 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ m W})(\mathbf{1 p})$

4. A 50Ω source is connected to a $45.3 \Omega+\mathrm{j} \cdot 31.1 \Omega$ load .
a) Compute the reflection coefficient seen by the source. ($\mathbf{0 . 5 p}$)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.0dB and Noise Factor 1.26 dB) and Device 2 (Gain 11.6 dB and Noise Factor 1.05 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 8.5 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.665	-157.5°	2.593	35.0°	0.070	6.0°	0.515	-99.5°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 28

Time allowed: 2 hours; All materials/equipments authorized
Instructor: assoc. prof. Radu Damian Student: \qquad Group \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 50Ω resistor paralel with a 0.221 pF capacitor, at 9.8 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.715-\mathrm{j} \cdot 0.940$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.30 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=8.1 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.2 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.0 dB). Assume the input power is 2.30 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW) for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 23.9 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ m W})(\mathbf{1 p})$

4. A 50Ω source is connected to a $65.2 \Omega-\mathrm{j} \cdot 67.4 \Omega$ load .
a) Compute the reflection coefficient seen by the source. ($\mathbf{0 . 5 p}$)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.8 dB and Noise Factor 1.24 dB) and Device 2 (Gain 11.0 dB and Noise Factor 1.04 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 9.8 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.626	-174.4°	2.404	17.6°	0.078	-0.2°	0.520	-109.0°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 29

Time allowed: 2 hours; All materials/equipments authorized
Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 42Ω resistor paralel with a 1.559 nH inductor, at 6.5 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.985-\mathrm{j} \cdot 0.815$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.05 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=7.4 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.1 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.8 dB). Assume the input power is 2.55 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW) for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 17.4 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ m W})(\mathbf{1 p})$

4. A 50Ω source is connected to a $45.7 \Omega-\mathrm{j} \cdot 39.0 \Omega$ load .
a) Compute the reflection coefficient seen by the source. ($\mathbf{0 . 5 p}$)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.8 dB and Noise Factor 1.24 dB) and Device 2 (Gain 11.1 dB and Noise Factor 1.08 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 10.1 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.617	-178.5°	2.366	13.7°	0.080	-1.5°	0.520	-109.9°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No.30
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 57Ω resistor paralel with a 0.320 pF capacitor, at 7.2 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.900+\mathrm{j} \cdot 0.990$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.65 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=7.3 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.5 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.6 dB). Assume the input power is 2.80 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 21.7 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}$ (in $\mathbf{m W}$)(1p)

4. A 50Ω source is connected to a $65.7 \Omega-\mathrm{j} \cdot 39.5 \Omega \mathrm{load}$.
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.8 dB and Noise Factor 1.11 dB) and Device 2 (Gain 11.0 dB and Noise Factor 0.90 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 12.9 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.640	146.3°	1.715	-21.7°	0.090	-31.5°	0.550	-149.0°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No.31
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 60Ω resistor paralel with a 1.179 nH inductor, at 9.8 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.870-\mathrm{j} \cdot 0.775$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $C=5.90 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=6.3 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.6 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.5 dB). Assume the input power is 3.85 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 15.9 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{n} \mathbf{m W}}$) (1p)

4. A 50Ω source is connected to a $35.2 \Omega+\mathrm{j} \cdot 64.4 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.7 dB and Noise Factor 1.22 dB) and Device 2 (Gain 10.4 dB and Noise Factor 0.90 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 9.5 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.635	-170.5°	2.443	21.5°	0.075	1.0°	0.520	-109.0°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No.32
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 40Ω resistor series with a 0.732 nH inductor, at 6.5 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.700+\mathrm{j} \cdot 0.790$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.05 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=9.2 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.4 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.5 dB). Assume the input power is 2.40 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW$)$ for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 22.1 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ m W})(\mathbf{1 p})$

4. A 50Ω source is connected to a $43.8 \Omega+\mathrm{j} \cdot 60.9 \Omega$ load .
a) Compute the reflection coefficient seen by the source. ($\mathbf{0 . 5 p}$)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.8 dB and Noise Factor 1.14 dB) and Device 2 (Gain 10.5 dB and Noise Factor 1.05 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 13.4 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.636	139.8°	1.686	-27.8°	0.090	-32.8°	0.550	-153.6°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No.33
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 62Ω resistor paralel with a 0.549 pF capacitor, at 6.7 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.130-\mathrm{j} \cdot 0.840$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $C=6.90 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=6.7 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.5 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.0 dB). Assume the input power is 2.00 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 20.1 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{n} \mathbf{m W}}$)(1p)

4. A 50Ω source is connected to a $65.7 \Omega-\mathrm{j} \cdot 56.0 \Omega \mathrm{load}$.
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.3 dB and Noise Factor 1.16 dB) and Device 2 (Gain 11.6 dB and Noise Factor 0.94 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 14.9 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.603	121.2°	1.618	-46.7°	0.099	-41.2°	0.559	-167.1°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 34

Time allowed: 2 hours; All materials/equipments authorized
Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 53Ω resistor paralel with a 1.198 nH inductor, at 6.8 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.160-\mathrm{j} \cdot 1.010$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.85 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=8.3 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.0 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 0.6 dB). Assume the input power is 3.65 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW) for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 15.9 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ m W})(\mathbf{1 p})$

4. A 50Ω source is connected to a $67.5 \Omega-\mathrm{j} \cdot 47.8 \Omega$ load .
a) Compute the reflection coefficient seen by the source. ($\mathbf{0 . 5 p}$)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.0dB and Noise Factor 1.14 dB) and Device 2 (Gain 10.8 dB and Noise Factor 0.95 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 13.7 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.633	135.9°	1.669	-31.4°	0.090	-33.4°	0.550	-156.3°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No. 35

Time allowed: 2 hours; All materials/equipments authorized
Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 42Ω resistor paralel with a 0.357 pF capacitor, at 8.4 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.970-\mathrm{j} \cdot 0.775$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.25 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=9.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.9 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.5 dB). Assume the input power is 2.85 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW) for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 15.5 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ \mathbf { m W }})(\mathbf{1 p})$

4. A 50Ω source is connected to a $61.9 \Omega+\mathrm{j} \cdot 69.7 \Omega$ load .
a) Compute the reflection coefficient seen by the source. ($\mathbf{0 . 5 p}$)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.0dB and Noise Factor 1.20 dB) and Device 2 (Gain 11.9 dB and Noise Factor 0.98 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 14.2 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.624	129.6°	1.644	-37.6°	0.092	-35.6°	0.552	-160.8°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No.36

Time allowed: 2 hours; All materials/equipments authorized
Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 58Ω resistor paralel with a 0.370 pF capacitor, at 9.9 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.290+\mathrm{j} \cdot 1.015$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.50 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=6.8 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.6 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.4 dB). Assume the input power is 2.35 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW) for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 18.4 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ m W})(\mathbf{1 p})$

4. A 50Ω source is connected to a $42.1 \Omega+\mathrm{j} \cdot 46.1 \Omega$ load .
a) Compute the reflection coefficient seen by the source. ($\mathbf{0 . 5 p}$)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.5 dB and Noise Factor 1.14 dB) and Device 2 (Gain 10.2 dB and Noise Factor 1.04 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 13.3 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.637	141.1°	1.692	-26.6°	0.090	-32.6°	0.550	-152.7°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No.37
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 31Ω resistor paralel with a 0.817 nH inductor, at 6.8 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.010-\mathrm{j} \cdot 0.920$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.15 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=8.4 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.9 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.1 dB). Assume the input power is 4.00 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}})$ for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 21.1 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{n} \mathbf{m W}}$) (1p)

4. A 50Ω source is connected to a $33.1 \Omega+\mathrm{j} \cdot 53.7 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.9 dB and Noise Factor 1.14 dB) and Device 2 (Gain 11.8 dB and Noise Factor 1.09 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 14.1 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.627	130.8°	1.648	-36.3°	0.091	-34.8°	0.551	-159.9°

a) Prove that you can design a match for maximum gain ($\mathbf{0 . 5 p}$)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No.38
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 45Ω resistor paralel with a 0.278 pF capacitor, at 8.3 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.980+\mathrm{j} \cdot 0.970$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $C=4.70 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=9.0 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.7 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.5 dB). Assume the input power is 1.85 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 22.7 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}$ (in $\mathbf{m W}$)(1p)

4. A 50Ω source is connected to a $61.1 \Omega+\mathrm{j} \cdot 68.9 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.8 dB and Noise Factor 1.22 dB) and Device 2 (Gain 10.4 dB and Noise Factor 0.98 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 10.3 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.611	178.5°	2.342	11.1°	0.080	-2.5°	0.520	-111.7°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No.39

Time allowed: 2 hours; All materials/equipments authorized
Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 67Ω resistor paralel with a 0.275 pF capacitor, at 9.1 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.920-\mathrm{j} \cdot 1.225$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.10 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=9.6 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.5 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.8 dB). Assume the input power is 2.05 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW) for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 21.7 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ \mathbf { m W }})(\mathbf{1 p})$

4. A 50Ω source is connected to a $52.3 \Omega+\mathrm{j} \cdot 33.6 \Omega$ load .
a) Compute the reflection coefficient seen by the source. ($\mathbf{0 . 5 p}$)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.6dB and Noise Factor 1.14 dB) and Device 2 (Gain 11.3 dB and Noise Factor 1.01 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 14.0 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.630	132.0°	1.652	-35.0°	0.090	-34.0°	0.550	-159.0°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No.40
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 39Ω resistor series with a 0.823 pF capacitor, at 7.6 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.805-\mathrm{j} \cdot 1.050$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.85 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=6.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.4 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.9 dB). Assume the input power is 4.00 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 16.1 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{n} \mathbf{m W}}$) (1p)

4. A 50Ω source is connected to a $50.9 \Omega-\mathrm{j} \cdot 64.5 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.4 dB and Noise Factor 1.24 dB) and Device 2 (Gain 11.2 dB and Noise Factor 1.08 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 9.1 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.647	-165.3°	2.495	26.7°	0.071	2.6°	0.520	-109.0°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No.41
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 45Ω resistor paralel with a 0.428 pF capacitor, at 8.9 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.130-\mathrm{j} \cdot 0.915$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.45 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=7.1 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.2 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.7 dB). Assume the input power is 2.85 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 18.1 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{n} \mathbf{m W}}$) (1p)

4. A 50Ω source is connected to a $60.2 \Omega+\mathrm{j} \cdot 49.2 \Omega \mathrm{load}$.
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.5 dB and Noise Factor 1.25 dB) and Device 2 (Gain 11.2 dB and Noise Factor 0.94 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 8.7 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.659	-160.1°	2.559	32.2°	0.070	4.8°	0.517	-103.3°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _2022

SUBJECT No.42
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 33Ω resistor paralel with a 0.775 nH inductor, at 7.7 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.880-\mathrm{j} \cdot 1.205$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $C=4.75 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=6.5 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.6 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 0.9 dB). Assume the input power is 3.15 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 21.9 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{n} \mathbf{m W}}$)(1p)

4. A 50Ω source is connected to a $64.0 \Omega+\mathrm{j} \cdot 52.7 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.1 dB and Noise Factor 1.21 dB) and Device 2 (Gain 10.4 dB and Noise Factor 1.03 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 13.1 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.639	143.7°	1.703	-24.2°	0.090	-32.2°	0.550	-150.9°

a) Prove that you can design a match for maximum gain ($\mathbf{0 . 5 p}$)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No.43
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 46Ω resistor paralel with a 0.488 pF capacitor, at 9.4 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.870+\mathrm{j} \cdot 1.140$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $C=4.90 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=8.6 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.3 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.3 dB). Assume the input power is 2.15 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 23.7 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}$ (in $\mathbf{m W}$)(1p)

4. A 50Ω source is connected to a $48.2 \Omega-\mathrm{j} \cdot 67.5 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.9 dB and Noise Factor 1.25 dB) and Device 2 (Gain 11.5 dB and Noise Factor 0.97 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 10.5 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.605	175.5°	2.318	8.5°	0.080	-3.5°	0.520	-113.5°

a) Prove that you can design a match for maximum gain ($\mathbf{0 . 5 p}$)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No.44
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 41Ω resistor paralel with a 0.476 pF capacitor, at 6.7 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.010-\mathrm{j} \cdot 0.920$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $C=6.25 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=6.3 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.8 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.9 dB). Assume the input power is 3.45 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 23.8 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}$ (in $\mathbf{m W}$)(1p)

4. A 50Ω source is connected to a $31.1 \Omega-\mathrm{j} \cdot 51.0 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.8 dB and Noise Factor 1.21 dB) and Device 2 (Gain 10.0 dB and Noise Factor 0.93 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 10.4 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.608	177.0°	2.330	9.8°	0.080	-3.0°	0.520	-112.6°

a) Prove that you can design a match for maximum gain ($\mathbf{0 . 5 p}$)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No.45
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 44Ω resistor paralel with a 0.490 pF capacitor, at 10.0 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.740+\mathrm{j} \cdot 1.175$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.60 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=6.4 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.7 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.1 dB). Assume the input power is 1.65 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ \mathbf { m W }})$ for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 22.4 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ m W})(\mathbf{1 p})$

4. A 50Ω source is connected to a $69.9 \Omega+\mathrm{j} \cdot 42.2 \Omega$ load .
a) Compute the reflection coefficient seen by the source. ($\mathbf{0 . 5 p}$)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.3dB and Noise Factor 1.20 dB) and Device 2 (Gain 11.5 dB and Noise Factor 0.91 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 8.4 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.668	-156.2°	2.610	36.4°	0.070	6.6°	0.514	-97.6°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No.46
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 48Ω resistor series with a 0.334 pF capacitor, at 9.6 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.815-\mathrm{j} \cdot 1.040$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.55 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=8.4 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.1 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.2 dB). Assume the input power is 3.30 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW$)$ for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 19.3 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ \mathbf { m W }})(\mathbf{1 p})$

4. A 50Ω source is connected to a $32.0 \Omega-\mathrm{j} \cdot 32.1 \Omega$ load .
a) Compute the reflection coefficient seen by the source. ($\mathbf{0 . 5 p}$)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.8 dB and Noise Factor 1.16 dB) and Device 2 (Gain 10.0 dB and Noise Factor 0.93 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 14.8 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.606	122.4°	1.622	-45.4°	0.098	-40.4°	0.558	-166.2°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No.47
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 49Ω resistor paralel with a 0.371 pF capacitor, at 7.5 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.930-\mathrm{j} \cdot 1.070$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.65 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=7.1 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.9 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.5 dB). Assume the input power is 2.35 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 21.6 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{n} \mathbf{m W}}$) (1p)

4. A 50Ω source is connected to a $40.3 \Omega-\mathrm{j} \cdot 67.5 \Omega \mathrm{load}$.
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.2 dB and Noise Factor 1.19 dB) and Device 2 (Gain 10.9 dB and Noise Factor 1.04 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 10.7 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.599	172.5°	2.294	5.9°	0.080	-4.5°	0.520	-115.3°

a) Prove that you can design a match for maximum gain ($\mathbf{0 . 5 p}$)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / __2022

SUBJECT No.48
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 40Ω resistor series with a 0.394 pF capacitor, at 7.7 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $1.295+\mathrm{j} \cdot 1.230$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.45 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=8.6 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.7 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 1.2 dB). Assume the input power is 3.05 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}$ (in mW) for signals inside the filter passband ($\mathbf{2 p}$)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 22.2 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\mathbf{i n ~ m W})(\mathbf{1 p})$

4. A 50Ω source is connected to a $69.3 \Omega+\mathrm{j} \cdot 30.6 \Omega$ load .
a) Compute the reflection coefficient seen by the source. ($\mathbf{0 . 5 p}$)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. ($\mathbf{0 . 5 p}$)
5. You must design a LNA using two amplifiers: Device 1 (Gain 9.4dB and Noise Factor 1.13 dB) and Device 2 (Gain 11.0 dB and Noise Factor 0.93 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 13.8 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.632	134.6°	1.663	-32.6°	0.090	-33.6°	0.550	-157.2°

a) Prove that you can design a match for maximum gain (0.5p)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No.49
 Time allowed: $\mathbf{2}$ hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 40Ω resistor paralel with a 0.303 pF capacitor, at 8.0 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.765+\mathrm{j} \cdot 1.135$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.35 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=7.3 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.6 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.9 dB). Assume the input power is 1.85 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 19.4 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{n} \mathbf{m W}}$) (1p)

4. A 50Ω source is connected to a $45.0 \Omega+\mathrm{j} \cdot 57.8 \Omega \mathrm{load}$.
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.2 dB and Noise Factor 1.24 dB) and Device 2 (Gain 11.8 dB and Noise Factor 1.03 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 13.5 GHz are as follows:

S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.635	138.5°	1.681	-29.0°	0.090	-33.0°	0.550	-154.5°

a) Prove that you can design a match for maximum gain ($\mathbf{0 . 5 p}$)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDCR - EDID407
Enrollment Year: \qquad , Examination Session \qquad June \qquad / _ 2022

SUBJECT No.50
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: assoc. prof. Radu Damian Student: \qquad Group

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must contain relevant intermediate results for maximum points.

1. For a load composed from a 25Ω resistor series with a 0.717 pF capacitor, at 7.8 GHz , compute the corresponding reflection coefficient (1p) and then plot on a Smith Chart (only the external circle and the complex plane axes) the corresponding point (1p).
2. For a normalized admittance equal to $0.745+\mathrm{j} \cdot 1.165$ compute the impedance. (1p)
3. A measurement system contains an ideal lossless coupler (wide bandwidth, matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.65 \mathrm{~dB}$, two matched amplifiers $\mathrm{G}_{1}=7.4 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.2 \mathrm{~dB}$ and a band-pass filter (equal ripple filter with a ripple equal to 2.3 dB). Assume the input power is 3.95 mW .
a) Compute the minimum and maximum power at the output port $\mathrm{P}_{\text {out }}(\underline{\mathbf{i n} \mathbf{m} \mathbf{W}}$) for signals inside the filter passband (2p)
b) Compute the power at the measurement port $\mathrm{P}_{\text {meas }}(\mathbf{0 . 5 p})$
c) Assume the same input signal is outside the filter passband at a frequency where the filter provides a 23.7 dB attenuation. Compute the power at the output port $\mathrm{P}_{\text {out }}$ (in $\mathbf{m W}$)(1p)

4. A 50Ω source is connected to a $64.1 \Omega+\mathrm{j} \cdot 38.2 \Omega$ load .
a) Compute the reflection coefficient seen by the source. (0.5p)
b) Design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
c) Draw the match schematic. (0.5p)
5. You must design a LNA using two amplifiers: Device 1 (Gain 8.4 dB and Noise Factor 1.29 dB) and Device 2 (Gain 11.7 dB and Noise Factor 1.04 dB). Which is the best order to place the two devices? Compute the gain and the noise factor of the cascaded schematic. (1p)
6. The scattering parameters of a transistor at 10.2 GHz are as follows:

S_{11}		S_{12}		S_{21}		S_{22}	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.614	180.0°	2.354	12.4°	0.080	-2.0°	0.520	-110.8°

a) Prove that you can design a match for maximum gain ($\mathbf{0 . 5 p}$)
b) Compute the reflection coefficients required towards the source and the load for maximum gain (1.5p)
c) Design the match at both input and output with single-stub matching sections (shunt stub solution) (1.5p)

